1
|
Lops C, Pasquato L, Pengo P. Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules 2024; 29:4350. [PMID: 39339345 PMCID: PMC11434499 DOI: 10.3390/molecules29184350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
A truly organocatalytic approach to the Darzens reaction affording α,β-epoxy carbonyl compounds in good yields was developed taking advantage of the high basic strength and low nucleophilicity of cyclopropenimine superbases. The catalytic active free base can easily be generated in situ from its hydrochloride salt and maintained in the active deprotonated form by performing the reactions in a heterogeneous reaction system in the presence of excess potassium carbonate as a sacrificial base.
Collapse
Affiliation(s)
- Carmine Lops
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
2
|
Di Carmine G, D’Agostino C, Bortolini O, Poletti L, De Risi C, Ragno D, Massi A. Heterogeneous Organocatalysts for Light-Driven Reactions in Continuous Flow. Molecules 2024; 29:2166. [PMID: 38792028 PMCID: PMC11124298 DOI: 10.3390/molecules29102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Within the realm of organic synthesis, photocatalysis has blossomed since the beginning of the last decade. A plethora of classical reactivities, such as selective oxidation of alcohol and amines, redox radical formation of reactive species in situ, and indirect activation of an organic substrate for cycloaddition by EnT, have been revised in a milder and more sustainable fashion via photocatalysis. However, even though the spark of creativity leads scientists to explore new reactions and reactivities, the urgency of replacing the toxic and critical metals that are involved as catalysts has encouraged chemists to find alternatives in the branch of science called organocatalysis. Unfortunately, replacing metal catalysts with organic analogues can be too expensive sometimes; however, this drawback can be solved by the reutilization of the catalyst if it is heterogeneous. The aim of this review is to present the recent works in the field of heterogeneous photocatalysis, applied to organic synthesis, enabled by continuous flow. In detail, among the heterogeneous catalysts, g-CN, polymeric photoactive materials, and supported molecular catalysts have been discussed within their specific sections, rather than focusing on the types of reactions.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Carmine D’Agostino
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum—University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Olga Bortolini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Lorenzo Poletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Carmela De Risi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| |
Collapse
|
3
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Rodríguez-Flórez LV, González-Marcos M, García-Mingüens E, Retamosa MDG, Kawase M, Selva E, Sansano JM. Phosphine Catalyzed Michael-Type Additions: The Synthesis of Glutamic Acid Derivatives from Arylidene- α-amino Esters. Molecules 2024; 29:342. [PMID: 38257255 PMCID: PMC10820836 DOI: 10.3390/molecules29020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.
Collapse
Affiliation(s)
- Lesly V. Rodríguez-Flórez
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - María González-Marcos
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Eduardo García-Mingüens
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Misa Kawase
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Elisabet Selva
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - José M. Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
5
|
Poletti L, Rovegno C, Di Carmine G, Vacchi F, Ragno D, Brandolese A, Massi A, Dambruoso P. Efficiency in Carbon Dioxide Fixation into Cyclic Carbonates: Operating Bifunctional Polyhydroxylated Pyridinium Organocatalysts in Segmented Flow Conditions. Molecules 2023; 28:molecules28041530. [PMID: 36838518 PMCID: PMC9960811 DOI: 10.3390/molecules28041530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Novel polyhydroxylated ammonium, imidazolium, and pyridinium salt organocatalysts were prepared through N-alkylation sequences using glycidol as the key precursor. The most active pyridinium iodide catalyst effectively promoted the carbonation of a set of terminal epoxides (80 to >95% yields) at a low catalyst loading (5 mol%), ambient pressure of CO2, and moderate temperature (75 °C) in batch operations, also demonstrating high recyclability and simple downstream separation from the reaction mixture. Moving from batch to segmented flow conditions with the operation of thermostated (75 °C) and pressurized (8.5 atm) home-made reactors significantly reduced the process time (from hours to seconds), increasing the process productivity up to 20.1 mmol(product) h-1 mmol(cat)-1, a value ~17 times higher than that in batch mode.
Collapse
Affiliation(s)
- Lorenzo Poletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Caterina Rovegno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
- Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, CNR Area della Ricerca di Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Filippo Vacchi
- Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, CNR Area della Ricerca di Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
- Correspondence: (A.M.); (P.D.); Tel.: +39-051-6399765 (P.D.)
| | - Paolo Dambruoso
- Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, CNR Area della Ricerca di Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
- Correspondence: (A.M.); (P.D.); Tel.: +39-051-6399765 (P.D.)
| |
Collapse
|
6
|
Application of multi-wall carbon nanotubes supported L-proline in continuous flow catalysis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Poletti L, Ragno D, Bortolini O, Presini F, Pesciaioli F, Carli S, Caramori S, Molinari A, Massi A, Di Carmine G. Photoredox Cross-Dehydrogenative Coupling of N-Aryl Glycines Mediated by Mesoporous Graphitic Carbon Nitride: An Environmentally Friendly Approach to the Synthesis of Non-Proteinogenic α-Amino Acids (NPAAs) Decorated with Indoles. J Org Chem 2022; 87:7826-7837. [PMID: 35621232 PMCID: PMC9207928 DOI: 10.1021/acs.joc.2c00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Indole-decorated
glycine derivatives are prepared through an environmentally
benign cross-dehydrogenative coupling between N-aryl
glycine analogues and indoles (yield of ≤81%). Merging heterogeneous
organocatalysis and photocatalysis, C–H functionalization has
been achieved by selective C-2 oxidation of N-aryl
glycines to afford the electrophilic imine followed by Friedel–Crafts
alkylation with indole. The sustainability of the process has been
taken into account in the reaction design through the implementation
of a metal-free recyclable heterogeneous photocatalyst and a green
reaction medium. Scale-up of the benchmark reaction (gram scale, yield
of 69%) and recycling experiments (over seven runs without a loss
of efficiency) have been performed to prove the robustness of the
protocol. Finally, mechanistic studies were conducted employing electron
paramagnetic resonance spectroscopy to unveil the roles of the photocatalyst
and oxygen in the formation of odd-electron species.
Collapse
Affiliation(s)
- Lorenzo Poletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Olga Bortolini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, Via Vetoio, 42, 67100 L'Aquila, Italy
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Di Carmine G, Pesciaioli F, Wang S, Sinibaldi A, Giorgianni G, Parlett CMA, Carlone A, D'Agostino C. Insights into substituent effects of benzaldehyde derivatives in a heterogenous organocatalyzed aldol reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Graziano Di Carmine
- University of Ferrara: Universita degli Studi di Ferrara Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie ITALY
| | - Fabio Pesciaioli
- University of Aquila: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche ITALY
| | | | - Arianna Sinibaldi
- University of Aquila: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche ITALY
| | - Giuliana Giorgianni
- University of Aquila: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche ITALY
| | | | - Armando Carlone
- University of Aquila: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche ITALY
| | - Carmine D'Agostino
- The University of Manchester School Chemical Engineering and Analytical Science The MillSackville Street M13 9PL Manchester UNITED KINGDOM
| |
Collapse
|
9
|
Di Carmine G, Forster L, Wang S, Parlett C, Carlone A, D'Agostino C. NMR relaxation time measurements of solvent effects in an organocatalysed asymmetric aldol reaction over silica SBA-15 supported proline. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00471a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The behaviour of solvents in solid-supported proline organocatalysts is explored using NMR relaxation measurements coupled with reaction screening. Solvents with a lower affinity for the solid surface lead to a higher reactivity.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via Luigi Borsari 46, I-44121, Ferrara, Italy
- Department of Chemical Engineering and Analytical Science (CEAS), The University of Manchester, M13 9PL, Manchester, UK
| | - Luke Forster
- Department of Chemical Engineering and Analytical Science (CEAS), The University of Manchester, M13 9PL, Manchester, UK
| | - Simeng Wang
- Department of Chemical Engineering and Analytical Science (CEAS), The University of Manchester, M13 9PL, Manchester, UK
| | - Christopher Parlett
- Department of Chemical Engineering and Analytical Science (CEAS), The University of Manchester, M13 9PL, Manchester, UK
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, Didcot, Oxfordshire, UK
- The University of Manchester at Harwell, Harwell Science and Innovation Campus, OX11 0DE, Didcot, Oxfordshire, UK
- Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, OX11 0FA, Harwell, Oxfordshire, UK
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Carmine D'Agostino
- Department of Chemical Engineering and Analytical Science (CEAS), The University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|