1
|
Song JL, Yang ZF, Fang S, Chen WL, Ye LB, Liu X, Shu B. Rhodium-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones. Chem Commun (Camb) 2024; 60:15000-15003. [PMID: 39600176 DOI: 10.1039/d4cc05621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A Rh(III)-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones was realized, which afforded various o-fluoroalkenylation β-ketosulfoxonium ylides with high Z-selectivity and diverse oxadiazolone fused-isoquinolines. This protocol featured mild conditions, broad substrate scope, and functional-group compatibility. In addition, scale-up synthesis, related applications and preliminary mechanistic explorations were also accomplished.
Collapse
Affiliation(s)
- Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zi-Feng Yang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China.
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Lian-Bao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China.
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Zhao R, Lv X, Yang HR, Gao L, Zhou L, Fang S, Liu SL. Rhodium(III)-Catalyzed Regioselective C4 Alkylation of Indoles with Nitroalkenes. J Org Chem 2024; 89:17844-17849. [PMID: 39565168 DOI: 10.1021/acs.joc.4c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The Rh(III)-catalyzed indole C4-H bond addition to nitroalkenes is disclosed under mild and redox-neutral reaction conditions, offering straightforward access to various 4-(2-nitroalkyl)indoles (34 examples) with excellent chemo- and regioselectivity. Furthermore, late-stage diversifications and mechanistic studies were also performed.
Collapse
|
3
|
Luo Y, Zhang M, Xia Y. Isatoic anhydride as a masked directing group and internal oxidant for Rh(III)-catalyzed decarbonylative annulation through C-H activation: insights from DFT calculations. Chem Commun (Camb) 2024; 60:12770-12773. [PMID: 39400304 DOI: 10.1039/d4cc03733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Density functional theory calculations uncovered a new mechanism for the rhodium-catalyzed decarbonylative annulation of isatoic anhydride with alkynes, in which the acyloxy group formed from the N-H deprotonation and C-O bond cleavage of isatoic anhydride acts as the directing group to assist the ortho C-H activation. From the generated five-membered rhodacycle intermediate, the final aminoisocoumarin product could be formed by subsequent steps of alkyne insertion, reductive elimination, decarbonylation, and protonation. The isocyanate moiety contained in the annulation intermediate was uncovered as a novel internal oxidant for the reaction, which oxidizes the Rh(I) to Rh(III) by decarbonylation.
Collapse
Affiliation(s)
- Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Keshri SK, Kapur M. Room temperature C-O bond cleavage of vinyl cyclic synthons via a metallaphotoredox approach. Chem Commun (Camb) 2024; 60:11164-11167. [PMID: 39291592 DOI: 10.1039/d4cc02815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Herein, we report visible-light induced C-O bond cleavage of vinyl-appended cyclic synthons via a Co(II)-photoredox dual catalytic approach operating at room temperature. This methodology exhibits a broad scope and is capable of accessing linear as well as branched allyl arenes simply by tuning the ring size of the cyclic motifs, in a mild and environmentally friendly protocol. Mechanistic studies unveil an interesting aspect of the reaction pathway involving a challenging homolytic cleavage of the Co(III)-O bond, 1,5-HAT of an unstable Co(II)-organometallic intermediate, and the key roles of O2 and the photocatalyst. The successful removal of the directing group further adds an important dimension to the methodology.
Collapse
Affiliation(s)
- Santosh Kumar Keshri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
5
|
Chen WL, Song JL, Fang S, Li JB, Zhang SS, Shu B. Rh(III)-catalyzed C(sp 2)-H functionalization/[4+2] annulation of oxadiazolones with iodonium ylides to access diverse fused-isoquinolines and fused-pyridines. Chem Commun (Camb) 2024; 60:6560-6563. [PMID: 38845542 DOI: 10.1039/d4cc02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this study, a Rh(III)-catalyzed C-H/N-H [4+2] annulation of oxadiazolones with iodonium ylides has been developed, which afforded a series of diverse fused-isoquinolines and fused-pyridines in moderate to high yields. These divergent synthesis protocols featured mild conditions, broad substrate scope, and functional-group compatibility. In addition, scale-up synthesis, related applications and preliminary mechanistic explorations were also accomplished.
Collapse
Affiliation(s)
- Wang-Liang Chen
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jia-Lin Song
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Sheng Fang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jiong-Bang Li
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Bing Shu
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
6
|
Nie JJ, Wang ZX. Rh(III)-Catalyzed C-H Allylation of Aromatic Ketoximes with Vinylaziridines. J Org Chem 2024; 89:5764-5777. [PMID: 38578982 DOI: 10.1021/acs.joc.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The Rh(III)-catalyzed reaction of aromatic ketoximes with 2-vinylaziridines affords ortho-allylation products of the phenyl rings of aromatic ketoximes in moderate to excellent yields. The reaction requires 0.5 equiv of NaOAc as a base and occurs under mild conditions. The protocol exhibits ortho-monoallylation selectivity, wide scope of substrates, and good compatibility of functional groups.
Collapse
Affiliation(s)
- Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
7
|
Zhu M, Zhu M, Wei F, Shao C, Li X, Liu B. Synthesis of Bridged Cycloisoxazoline Scaffolds via Rhodium-Catalyzed Coupling of Nitrones with Cyclic Carbonate. J Org Chem 2023; 88:16330-16339. [PMID: 37966420 DOI: 10.1021/acs.joc.3c01840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bridged isoxazolidines were synthesized via Rh(III)-catalyzed C-H allylation of α-aryl nitrones with 5-methylene-1,3-dioxan-2-one. The nitrone group serves as a directing group and 1,3-dipole in the C-H activation/[3 + 2] cycloaddition cascade, exhibiting excellent chemo- and stereoselectivity along with good functional group compatibility. The resulting skeletal structure was conveniently modified to produce a range of important chemical frameworks, and the protocol was applied to biologically active molecules.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengdie Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangjie Wei
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chongjing Shao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Basak S, Paul T, Punniyamurthy T. A redox-neutral weak carbonyl chelation assisted C4-H allylation of indoles with vinylcyclopropanes. Chem Commun (Camb) 2023; 59:11568-11571. [PMID: 37682283 DOI: 10.1039/d3cc03614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A weak acyl chelation-assisted distal C4-H allylation of indoles has been accomplished using vinylcyclopropanes as an allylating agent under redox-neutral ruthenium(II) catalysis. The regioselectivity, removable directing group, substrate scope and diastereoselectivity are the important practical features.
Collapse
Affiliation(s)
- Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
9
|
Shu B, Song JL, Chen SY, Zheng YC, Zhang SS. Rh(III)-Catalyzed C-H Functionalization/Annulation of 1-Arylindazolones: Divergent Synthesis of Fused Indazolones and Allyl Indazolones. J Org Chem 2023; 88:3499-3508. [PMID: 36891880 DOI: 10.1021/acs.joc.2c02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Rh(III)-catalyzed C-H/N-H annulation and C-H allylation of phenylindazolones have been realized by employing 5-methylene-1,3-dioxan-2-one and 4-vinyl-1,3-dioxolan-2-one as scalable cross-coupling partners, delivering functionalized indazolone fused heterocycles and branched and linear allyl indazolones respectively in moderate to high yield. These divergent synthesis protocols showcase mild conditions, broad substrate scope, and high functional-group compatibility. In addition, scale-up synthesis and preliminary mechanistic exploratory were also accomplished.
Collapse
Affiliation(s)
- Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Wu F, Xiao L, Xie H, Chen SY, Song JL, Zheng YC, Liu YZ, Zhang SS. Rhodium(III)-catalyzed regioselective C(sp 2)-H activation of indoles at the C4-position with iodonium ylides. Org Biomol Chem 2022; 20:5055-5059. [PMID: 35695281 DOI: 10.1039/d2ob00722c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report a Rh(III)-catalyzed C4-selective activation of indoles by using iodonium ylides as carbene precursors. This protocol proceeded under redox neutral reaction conditions and provided important coupling products with good tolerance of functional groups and high yields. In addition, one-pot synthesis and scale-up and mechanistic studies were also conducted.
Collapse
Affiliation(s)
- Fuhai Wu
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510006, P. R. China.
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yan-Zhi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Taskesenligil Y, Aslan M, Cogurcu T, Saracoglu N. Directed C-H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes via a Palladium Catalyst System. J Org Chem 2022; 88:1299-1318. [PMID: 35609297 PMCID: PMC9903333 DOI: 10.1021/acs.joc.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pd(II)-catalyzed C-H arylations of free (NH) indoles including different carbonyl directing groups on C3-position with aryl iodides are demonstrated. Importantly, the reactions are carried out using the same catalyst system without any additional transient directing group (TDG). In this study, the formyl group as a directing group gave the C4-arylated indoles versus C2-arylation. Using this catalyst system, C-H functionalization of 3-acetylindoles provided domino C4-arylation/3,2-carbonyl migration products. This transformation involves the unusual migration of the acetyl group to the C2-position following C4-arylation in one pot. Meanwhile, migration of the acetyl group could be simply controlled and N-protected 3-acetylindoles afforded C4-arylation products without migration of the acetyl group. Functionalization of indole-3-carboxylic acid (or methyl ester) with aryl iodides using the present Pd(II)-catalyst system resulted in decarboxylation followed by the formation of C2-arylated indoles. Based on the control experiments and the literature, plausible mechanisms are proposed. The synthetic utilities of these acetylindole derivatives have also been demonstrated. Remarkably, C4-arylated acetylindoles have allowed the construction of functionalized pityiacitrin (a natural product).
Collapse
|
12
|
Hu YC, Min XT, Ji DW, Chen QA. Catalytic prenylation and reverse prenylation of aromatics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Liu YZ, Zeng YF, Shu B, Zheng YC, Xiao L, Chen SY, Song JL, Zhang X, Zhang SS. Rh( iii)-Catalyzed dienylation and cyclopropylation of indoles at the C4 position with alkylidenecyclopropanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00763k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a Rh(iii)-catalyzed C–H functionalization of indoles at the C4 position with alkylidenecyclopropanes (ACPs).
Collapse
Affiliation(s)
- Yan-Zhi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Gu H, Jin X, Li J, Li H, Liu J. Recent Progress in Transition Metal-Catalyzed C—H Bond Activation of N-Aryl Phthalazinones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|