1
|
Kong Y, Gong M, Xu X, Wu Y, Jiang X. An efficient direct electrolysis method for the synthesis of 1,1,1,3,3,3-hexafluoroisopropyxy substituted imidazo[1,2- a]pyridines. Org Biomol Chem 2025; 23:2190-2194. [PMID: 39869101 DOI: 10.1039/d4ob02073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-a]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-a]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-a]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.
Collapse
Affiliation(s)
- Yanyan Kong
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ming Gong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xuemei Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xingmao Jiang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| |
Collapse
|
2
|
Panda N, Palit K, Mohapatra S. "Cation Pool" generated from DMSO and 1,2-dihaloethanes and their application in organic synthesis. Org Biomol Chem 2024; 22:7103-7110. [PMID: 39175440 DOI: 10.1039/d4ob00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Conventionally, carbenium and onium ions are prepared in the presence of nucleophiles due to their instability and transient nature. The nucleophiles that are unstable or inert to the reaction media cannot be used for reaction with the cationic species to access the desired compounds. To overcome these limitations, developing methods for generating organic cations irreversibly in the absence of nucleophiles is essential. The "cation pool" method developed by Yoshida and co-workers stands out as a reliable strategy to generate and accumulate the reactive cations in solution in the absence of nucleophiles. The cation pool method involves the electrolysis of the substrate in the absence of nucleophiles, usually at low temperature. Moreover, the generation of halogen and chalcogen cations through electrolysis needs extra care because of their low stability. This review covers our effort in generating and accumulating halogen cations as "cation pools", most importantly by simply heating a mixture of dimethyl sulfoxide (DMSO) and 1,2-dihaloethane (DXE, X = Cl, Br, I), and their use in the halogenation reactions. Furthermore, condition-dependent Pummerer-type fragmentations of DMSO-stabilized halogen cations to methyl(methylene)sulfonium ions and chlorodimethylsulfonium ions for synthetic applications are described.
Collapse
Affiliation(s)
- Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| |
Collapse
|
3
|
Wang J, Liang J, Hou H, Liu W, Wu H, Sun H, Ou W, Su C, Liu B. Heterogeneous organophotocatalytic HBr oxidation coupled with oxygen reduction for boosting bromination of arenes. Nat Commun 2024; 15:4744. [PMID: 38834549 DOI: 10.1038/s41467-024-48349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/28/2024] [Indexed: 06/06/2024] Open
Abstract
Developing mild photocatalytic bromination strategies using sustainable bromo source has been attracting intense interests, but there is still much room for improvement. Full utilization of redox centers of photocatalysts for efficient generation of Br+ species is the key. Herein we report heterogenous organophotocatalytic HBr oxidation coupled with oxygen reduction to furnish Br2 and H2O2 for effective bromination of arenes over Al2O3 supported perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). Mechanism studies suggest that O-vacancy in Al2O3 can provide Lewis-acid-type anchoring sites for O2, enabling unexpected dual-electron transfer from anchored photoexcited PTCDA to chemically bound O2 to produce H2O2. The in-situ generated H2O2 and Br2 over redox centers work together to generate HBrO for bromination of arenes. This work provides new insights that heterogenization of organophotocatalysts can not only help to improve their stability and recyclability, but also endow them with the ability to trigger unusual reaction mode via cooperative catalysis with supports.
Collapse
Affiliation(s)
- Jie Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Liang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wei Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongru Wu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongli Sun
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR 999007, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR 999007, China.
| |
Collapse
|
4
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Dalai PG, Swain S, Panda N. DMSO-DCE Triggered Chemodivergent C-Methylenation of Electron-Rich Arenes: An Easy Access to Diarylmethanes. J Org Chem 2024; 89:2599-2604. [PMID: 38293774 DOI: 10.1021/acs.joc.3c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The chemodivergent property of dimethyl sulfoxide (DMSO) along with 1,2-dichloroethane (DCE) was exploited for the incorporation of a methylene group to form diarylmethanes through a dearomatization/rearomatization process. Methyl(methylene)sulfonium ions (CH2=S+-Me) were generated by simple heating of commonly used solvents such as DMSO and DCE. These ions were subsequently trapped by electron-rich arenes and heteroarenes, resulting in the synthesis of both symmetrical and unsymmetrical diarylmethanes. This protocol was further extended to access N-methylenamides by reacting 2-naphthol with amides or nitriles in the presence of DMSO and DCE.
Collapse
Affiliation(s)
- Pallaba Ganjan Dalai
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamprava Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
6
|
Zhang C, Chen Q, Qin Y, Bu Z, Wang Q. Solvent-controlled halohydroxylation or C3-C2 coupling of pyridinium salts through an interrupted dearomative reduction. Chem Commun (Camb) 2024; 60:992-995. [PMID: 38168667 DOI: 10.1039/d3cc05212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Herein, we report an efficient and easily operable method to halohydroxylate pyridiniums through an interrupted dearomative reduction strategy. In this process, we make the most of the halide anion from the pyridinium salts by performing the reaction in DMSO without the need of external HX added. Notably, by changing the solvents from DMSO into Et2O, the bimolecular C3-C2 coupling occurs successfully.
Collapse
Affiliation(s)
- Congcong Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Qinhao Chen
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Yunlong Qin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Qilin Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Chen XH, Lhazom T, Cui HL. NH 4OAc/DMSO-Promoted Benzylation of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2023; 88:13598-13609. [PMID: 37728513 DOI: 10.1021/acs.joc.3c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Benzylation of pyrrolo[2,1-a]isoquinoline derivatives has been realized with various phenols by the use of ammonium acetate as a promoter (20 examples, up to 84% yield). DMSO served as the source of methylene and solvent. The employment of iron chloride as a catalyst can also afford the desired benzylated products in moderate to good yields (11 examples, up to a 74% yield).
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Tsesong Lhazom
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
8
|
Pearson TJ, Shimazumi R, Driscoll JL, Dherange BD, Park DI, Levin MD. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 2023; 381:1474-1479. [PMID: 37769067 PMCID: PMC10910605 DOI: 10.1126/science.adj5331] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Nitrogen scanning in aryl fragments is a valuable aspect of the drug discovery process, but current strategies require time-intensive, parallel, bottom-up synthesis of each pyridyl isomer because of a lack of direct carbon-to-nitrogen (C-to-N) replacement reactions. We report a site-directable aryl C-to-N replacement reaction allowing unified access to various pyridine isomers through a nitrene-internalization process. In a two-step, one-pot procedure, aryl azides are first photochemically converted to 3H-azepines, which then undergo an oxidatively triggered C2-selective cheletropic carbon extrusion through a spirocyclic azanorcaradiene intermediate to afford the pyridine products. Because the ipso carbon of the aryl nitrene is excised from the molecule, the reaction proceeds regioselectively without perturbation of the remainder of the substrate. Applications are demonstrated in the abbreviated synthesis of a pyridyl derivative of estrone, as well as in a prototypical nitrogen scan.
Collapse
Affiliation(s)
- Tyler J. Pearson
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ryoma Shimazumi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Julia L. Driscoll
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Balu D. Dherange
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Dong-Il Park
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mark D. Levin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Baranov DS, Kashnik AS, Atnyukova AN, Dzuba SA. Spin-Labeled Diclofenac: Synthesis and Interaction with Lipid Membranes. Molecules 2023; 28:5991. [PMID: 37630243 PMCID: PMC10458756 DOI: 10.3390/molecules28165991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.
Collapse
Affiliation(s)
- Denis S. Baranov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| | - Anna S. Kashnik
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| | | | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| |
Collapse
|
10
|
Abstract
We have developed a mild sulfenylation of pyrrolo[2,1-a]isoquinolines with acetyl bromide and dimethyl sulfoxide. A wide range of functionalized pyrrolo[2,1-a]isoquinolines could be prepared efficiently through the formation of a C-S bond with thiophenols (27 examples, 36-94% yields). The current strategy can also be utilized for functionalization of pyrrolo[1,2-a]quinolines and indole.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
11
|
Li J, Liu C, Zhao Z, Wang X, Chen D, Yue K, Chen S, Jin M, Shan Y. Halogen cation-promoted and solvent-regulated electrophilic cyclization for the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones. Org Biomol Chem 2023; 21:2440-2446. [PMID: 36876461 DOI: 10.1039/d3ob00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A novel approach for the production of halogen cations through the reaction of halogens with silver ions is described in this paper. On this basis, the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones is realized through solvent regulation. The gram-scale reaction and the compatibility of complex substrates demonstrate the synthetic potential of this protocol, which will be an appealing strategy in organic synthesis.
Collapse
Affiliation(s)
- Jianming Li
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Chengxiao Liu
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zihan Zhao
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Kaiyuan Yue
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Sihan Chen
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ming Jin
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
12
|
Palit K, Sepay N, Panda N. Arylative Methylation of 2,3-Dihydropyrazines and Pyrazinones Using Dimethyl Sulfoxide as a C1 Source. J Org Chem 2023. [PMID: 36786556 DOI: 10.1021/acs.joc.2c02675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Divergent synthesis of α-C-H methylated pyrazines and pyrazinones using dimethyl sulfoxide as a nonconventional methylating agent under metal-free conditions was reported. Dimethyl sulfoxide-coordinated bromine cation pools generated from the treatment of dimethyl sulfoxide and 1,2-dibromoethane undergo Pummerer-type fragmentation to afford an electrophilic methyl(methylene)sulfonium ion for reaction with a carbon nucleophile followed by aromatization to afford α-methylated pyrazines and pyrazinones.
Collapse
Affiliation(s)
- Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
13
|
Abstract
A mild bromination of pyrrolo[2,1-a]isoquinolines has been achieved using acetyl bromide and dimethyl sulfoxide. A series of brominated pyrrolo[2,1-a]isoquinolines could be obtained in moderate to excellent yields (46-99%) at room temperature. This strategy can also be expanded to the facile bromination of polysubstituted pyrroles, indoles, electron-rich phenols, aniline, and 2-naphthol.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
14
|
Jiang DB, Wu FY, Cui HL. Recent progress in the oxidative bromination of arenes and heteroarenes. Org Biomol Chem 2023; 21:1571-1590. [PMID: 36723168 DOI: 10.1039/d3ob00019b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oxidative bromination has been serving as a powerful tool for the synthesis of bromo-containing molecules, as this bromination strategy features environmental friendliness, high flexibility in reaction system design and wide abundance of bromide sources and oxidants. The past decade has witnessed a large number of efficient oxidative bromination reaction systems and novel brominated aromatics. This review summarizes recent developments in the field of oxidative preparation of bromoarenes and bromoheteroarenes covering from 2012 to 2022.
Collapse
Affiliation(s)
- Da-Bo Jiang
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China. .,State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Fei-Yue Wu
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
15
|
Fang S, Chen W, Jiang H, Ma R, Wu W. Palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes: access to functionalized 3-bromoindoles. Chem Commun (Camb) 2022; 58:9666-9669. [PMID: 35946388 DOI: 10.1039/d2cc03298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach to the synthesis of 3-bromoindoles via palladium-catalyzed oxidative C-H activation/annulation of N-alkylanilines with bromoalkynes has been described. This protocol features high atom economy, excellent chemo- and regioselectivities, and good functional group tolerance. Moreover, the resultant 3-bromoindoles can be transformed to various functionalized indole derivatives, which demonstrates the practicability of this method in organic synthesis.
Collapse
Affiliation(s)
- Songjia Fang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenhao Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ruize Ma
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
16
|
Chen XH, Li WZ, Zhang W, Wang ZD, Cui HL. Modification of Pyrroloisoquinolines with 2‐Bromoketones and Dimethyl Sulfoxide through Bromination. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Hui Chen
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Wan-Zhen Li
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Wei Zhang
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Zhao-Dong Wang
- Chongqing University of Arts and Sciences Key Laboratory of Environmental Materials & Remediation Technologies CHINA
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis 319 Honghe Ave, Yongchuan, Chongqing 402160 Chongqing CHINA
| |
Collapse
|