1
|
Mo G, Li X, Jian Y, Xu W, Xiao X, Chen A, Ding Y, Jiang X, Shen J, Fan L, Wang Z, Dai L. Mn(II)-MOF nanoparticles conjugated with EOB-PEG as high-performance hepatobiliary-specific MRI contrast agents. NANOSCALE 2025; 17:5743-5754. [PMID: 39902588 DOI: 10.1039/d4nr05293e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Hepatobiliary magnetic resonance imaging (MRI) is a crucial diagnostic tool for early detection and staging of liver tumors. However, the currently available hepatobiliary-specific contrast agents (CAs), acyclic Gd chelates, suffer from limited kinetic stability and may pose serious toxicity risks to patients with specific functional impairments. In light of these concerns, Mn-based MRI CAs have gained increasing attention as potential alternatives to Gd-based agents, despite challenges in their stability and relaxivity. Herein, we present a novel hepatobiliary-specific CA in the form of Mn(II)-based metal-organic framework (MOF) nanoparticles conjugated with ethoxybenzyl-poly(ethylene glycol) (EOB-PEG) ligands. These nanoparticles exhibit significantly higher relaxivity (r1 = 66.4 mM-1 s-1 in 4.5% HSA) compared to a commercial hepatobiliary-specific CA, Gd-EOB-DTPA (r1 = 11.2 mM-1 s-1 in 4.5% HSA), along with excellent biocompatibility. This enables them to achieve equivalent imaging contrast with a substantially lower metal concentration (0.025 mmol Mn2+ per kg BW vs. 0.1 mmol Gd3+ per kg BW for the commercial Gd-EOB-DTPA). Furthermore, our MOF-based nanoparticles demonstrate precise diagnostic capabilities in vivo, as evidenced by their performance in orthotopic HCC mouse models. This progress holds great promise for the development of advanced hepatobiliary-specific CAs, which could significantly enhance early liver cancer diagnosis by providing clearer and safer imaging options.
Collapse
Affiliation(s)
- Gengshen Mo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian 350108, China.
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Xingjiang Li
- Department of Radiology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China.
| | - Yong Jian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Weiyuan Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Xinhui Xiao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Aiyi Chen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Yinghui Ding
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Xin Jiang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lihai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian 350108, China.
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China
| | - Zhiqiang Wang
- Department of Radiology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China.
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Zhu Z, Ouyang Q, Zhou L, Fan C, Zheng M, Nezamzadeh-Ejhieh A, Yuan H, Peng Y, Liu J. Current status and prospects of detection of breast cancer by MOFs platform. J Mol Struct 2025; 1321:139797. [DOI: 10.1016/j.molstruc.2024.139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
4
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
5
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
6
|
Zhou C, Yang Q, Zhou X, Jia N. PDA-coated CPT@MIL-53 (Fe) based Theranostic Nanoplatform for pH-Responsive and MRI-Guided Chemotherapy. J Mater Chem B 2022; 10:1821-1832. [PMID: 35201249 DOI: 10.1039/d1tb02339j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theranostic nanoplatform for multimodal diagnosis and treatment of tumors is a currently research hotspot in the field of nanomedicine. MOF-based theranostic nanoplatforms of integrating drug delivery with magnetic resonance imaging...
Collapse
Affiliation(s)
- Chaohui Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Qingye Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Xinyue Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
8
|
Nkanga CI, Chung YH, Shukla S, Zhou J, Jokerst JV, Steinmetz NF. The in vivo fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomater Sci 2021; 9:7134-7150. [PMID: 34591046 PMCID: PMC8600448 DOI: 10.1039/d1bm01113h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant virus nanoparticles (VNPs) have multiple advantages over their synthetic counterparts including the cost-effective large-scale manufacturing of uniform particles that are easy to functionalize. Tobacco mosaic virus (TMV) is one of the most promising VNP scaffolds, reflecting its high aspect ratio and ability to carry and/or display multivalent therapeutic ligands and contrast agents. Here we investigated the circulation, protein corona, immunogenicity, and organ distribution/clearance of TMV particles internally co-labeled with cyanine 5 (Cy5) and chelated gadolinium (Gd) for dual tracking by fluorescence imaging and optical emission spectrometry, with or without an external coating of polydopamine (PDA) to confer photothermal and photoacoustic capabilities. The PDA-coated particles (Gd-Cy5-TMV-PDA) showed a shorter plasma circulation time and broader distribution to organs of the reticuloendothelial system (liver, lungs, and spleen) than uncoated Gd-Cy5-TMV particles (liver and spleen only). The Gd-Cy5-TMV-PDA particles were surrounded by 2-10-fold greater protein corona (containing mainly immunoglobulins) compared to Gd-Cy5-TMV particles. However, the enzyme-linked immunosorbent assay (ELISA) revealed that PDA-coated particles bind 2-fold lesser to anti-TMV antibodies elicited by particle injection than uncoated particles, suggesting that the PDA coat enables evasion from systemic antibody surveillance. Gd-Cy5-TMV-PDA particles were cleared from organs after 8 days compared to 5 days for the uncoated particles. The slower tissue clearance of the coated particles makes them ideal for theranostic applications by facilitating sustained local delivery in addition to multimodal imaging and photothermal capabilities. We have demonstrated the potential of PDA-coated proteinaceous nanoparticles for multiple biomedical applications.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| |
Collapse
|
9
|
Suárez-García S, Solórzano R, Alibés R, Busqué F, Novio F, Ruiz-Molina D. Antitumour activity of coordination polymer nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
12
|
Peller M, Lanza A, Wuttke S. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Peller
- Department of Radiology University Hospital, LMU Munich Munich 80539 Germany
| | - Arianna Lanza
- Center for Nanotechnology Innovation @NEST Istituto Italiano di Tecnologia Pisa 56127 Italy
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Ikerbasque‐Basque Foundation for Science Bilbao 48011 Spain
| |
Collapse
|
13
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Liu X, Liang T, Zhang R, Ding Q, Wu S, Li C, Lin Y, Ye Y, Zhong Z, Zhou M. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9643-9655. [PMID: 33606494 DOI: 10.1021/acsami.0c21486] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline materials comprising metal centers and organic linkers that feature structural rigidity and functional flexibility. These attractive materials offer large surface areas, high porosity, and good chemical stability; they have shown promise in chemistry (H2 separation and catalysis), magnetism, and optics. They have also shown potential for drug delivery following the demonstration in 2006 that chromium-based MOFs can be loaded with ibuprofen. Since then, iron-based MOFs (Fe-MOFs) have been shown to offer high drug loading and excellent biocompatibility. The present review focuses on the synthesis and surface modifications of Fe-MOFs as well as their applications in drug delivery and biomedicine.
Collapse
Affiliation(s)
- Xianbin Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tiantian Liang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rongtao Zhang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Ding
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
15
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmartí-Luis J. Metal–Organic Frameworks in Motion. Chem Rev 2020; 120:11175-11193. [DOI: 10.1021/acs.chemrev.0c00535] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anastasia Terzopoulou
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - James D. Nicholas
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Josep Puigmartí-Luis
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|