1
|
Manissorn J, Promsuk J, Wangkanont K, Thongnuek P. Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials. Drug Deliv 2025; 32:2449703. [PMID: 39782014 PMCID: PMC11721625 DOI: 10.1080/10717544.2025.2449703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles. Recombinant spider silk proteins, fibrin-binding peptides, collagen-mimetic peptides, and keratin-derived structures similarly illustrate the ability to engineer precise interactions and to design controlled release systems. Additionally, the use of resilin-like peptides showcases the potential for creating highly elastic and resilient biomaterials. This review highlights current achievements and future perspectives in the field, emphasizing the potential of biomimetic peptides to transform biopolymer-based biomedical applications.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jaturong Promsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Pichon TJ, White NJ, Pun SH. ENGINEERED INTRAVENOUS THERAPIES FOR TRAUMA. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 27:100456. [PMID: 37456984 PMCID: PMC10343715 DOI: 10.1016/j.cobme.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Trauma leading to severe hemorrhage and shock on average kills patients within 3 to 6 hours after injury. With average prehospital transport times reaching 1-6 hours in low- to middle-income countries, stopping the bleeding and reversing hemorrhagic shock is vital. First-generation intravenous hemostats rely on traditional drug delivery platforms, such as self-assembling systems, fabricated nanoparticles, and soluble polymers due to their active targeting, biodistribution, and safety. We discuss some challenges translating these therapies to patients, as very few have successfully made it through preclinical evaluation in large-animals, and none have translated to the clinic. Finally, we discuss the physiology of hemorrhagic shock, highlight a new low volume resuscitant (LVR) PEG-20k, and end with considerations for the rational design of LVRs.
Collapse
Affiliation(s)
- Trey J. Pichon
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15 Avenue NE, Box 355061, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Nathan J. White
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15 Avenue NE, Box 355061, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| |
Collapse
|
3
|
Sheridan A, Brown AC. Recent Advances in Blood Cell-Inspired and Clot Targeted Thrombolytic Therapies. J Tissue Eng Regen Med 2023; 2023:6117810. [PMID: 37731481 PMCID: PMC10511217 DOI: 10.1155/2023/6117810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood-cells and clotting proteins to effectively target and lyse clots.
Collapse
Affiliation(s)
- Anastasia Sheridan
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
4
|
Nickel AC, Denton AR, Houston JE, Schweins R, Plivelic TS, Richtering W, Scotti A. Beyond simple self-healing: How anisotropic nanogels adapt their shape to their environment. J Chem Phys 2022; 157:194901. [DOI: 10.1063/5.0119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The response of soft colloids to crowding depends sensitively on the particles’ compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.
Collapse
Affiliation(s)
- Anne C. Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Tomàs S. Plivelic
- MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
5
|
Dong R, Zhang H, Guo B. Emerging hemostatic materials for non-compressible hemorrhage control. Natl Sci Rev 2022; 9:nwac162. [PMID: 36381219 PMCID: PMC9646998 DOI: 10.1093/nsr/nwac162] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Non-compressible hemorrhage control is a big challenge in both civilian life and the battlefield, causing a majority of deaths among all traumatic injury mortalities. Unexpected non-compressible bleeding not only happens in pre-hospital situations but also leads to a high risk of death during surgical processes throughout in-hospital treatment. Hemostatic materials for pre-hospital treatment or surgical procedures for non-compressible hemorrhage control have drawn more and more attention in recent years and several commercialized products have been developed. However, these products have all shown non-negligible limitations and researchers are focusing on developing more effective hemostatic materials for non-compressible hemorrhage control. Different hemostatic strategies (physical, chemical and biological) have been proposed and different forms (sponges/foams, sealants/adhesives, microparticles/powders and platelet mimics) of hemostatic materials have been developed based on these strategies. A summary of the requirements, state-of-the-art studies and commercial products of non-compressible hemorrhage-control materials is provided in this review with particular attention on the advantages and limitations of their emerging forms, to give a clear understanding of the progress that has been made in this area and the promising directions for future generations.
Collapse
Affiliation(s)
- Ruonan Dong
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
Hu B, Bao G, Xu X, Yang K. The Topical Hemostatic Materials for Coagulopathy. J Mater Chem B 2022; 10:1946-1959. [DOI: 10.1039/d1tb02523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical sciences have witnessed significant progresses in hemostatic materials which have saved lives by supporting natural hemostatic ability. However, for the treatment of coagulopathy, where natural hemostatic ability is dysfunctional,...
Collapse
|