1
|
Ren Y, Zhao Z, Fan T, Luan R, Yao L, Shen H, Hu X, Cui L, Li MX. Chitosan and TiO 2 functionalized polypropylene nonwoven fabrics with visible light induced photocatalytic antibacterial performances. Int J Biol Macromol 2023; 250:126305. [PMID: 37573905 DOI: 10.1016/j.ijbiomac.2023.126305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Chitosan/TiO2 functionalized polypropylene (CS/TiO2/PP) nonwoven fabrics were fabricated through crosslinking of chitosan with glutaraldehyde followed by loading of TiO2 nanoparticles. The functionalized CS/TiO2/PP has super hydrophilicity and excellent visible light induced photocatalytic antibacterial properties owing to the synergistic effects of CS and TiO2. The photocatalytic degradation performance was determined by assessing the degradation of methyl blue under simulated visible light irradiation and its recyclability was also evaluated. In addition, SEM images demonstrated that TiO2 nanoparticles were distributed evenly on the surface of the 2 g/L CS/TiO2/PP. Meanwhile, the polypropylene surface showed a significant increase in hydrophilicity after being treated with chitosan and TiO2. The photocatalytic degradation results revealed that CS/TiO2/PP had higher photocatalytic properties than those of pure PP under visible light, and the degradation rate of methylene blue reached 96.4 % after 90 min of light exposure. Compared to pure PP, the antibacterial properties of CS/TiO2/PP significantly increased, and the bacterial reduction percentages were increased to 98.7 % and 96.3 %, against E. coli and S. aureus, respectively. The functionalized CS/TiO2/PP composites exhibited promising potential in environmentally friendly antibacterial materials.
Collapse
Affiliation(s)
- Yu Ren
- School of Textile and Clothing, Nantong University, Jiangsu 226019, China
| | - Ziyao Zhao
- School of Textile and Clothing, Nantong University, Jiangsu 226019, China
| | - Tingyue Fan
- School of Textile and Clothing, Nantong University, Jiangsu 226019, China
| | - Rui Luan
- School of Textile and Clothing, Nantong University, Jiangsu 226019, China
| | - Lirong Yao
- School of Textile and Clothing, Nantong University, Jiangsu 226019, China
| | - Hong Shen
- Huzhou Zhongshi Technology Co., Ltd., Xin Feng Ming Group, Zhejiang 313000, China
| | - Xingqi Hu
- Huzhou Zhongshi Technology Co., Ltd., Xin Feng Ming Group, Zhejiang 313000, China
| | - Li Cui
- College of Materials and Textile Engineering, Jiaxing University, Zhejiang 314001, China
| | - Mei-Xian Li
- School of Textile and Clothing, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
2
|
Ferreira T, Vale AC, Pinto AC, Costa RV, Pais V, Sousa D, Gomes F, Pinto G, Dias JG, Moreira IP, Mota C, Bessa J, Antunes JC, Henriques M, Cunha F, Fangueiro R. Comparison of Zinc Oxide Nanoparticle Integration into Non-Woven Fabrics Using Different Functionalisation Methods for Prospective Application as Active Facemasks. Polymers (Basel) 2023; 15:3499. [PMID: 37688127 PMCID: PMC10489795 DOI: 10.3390/polym15173499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The development of advanced facemasks stands out as a paramount priority in enhancing healthcare preparedness. In this work, different polypropylene non-woven fabrics (NWF) were characterised regarding their structural, physicochemical and comfort-related properties. The selected NWF for the intermediate layer was functionalised with zinc oxide nanoparticles (ZnO NPs) 0.3 and 1.2wt% using three different methods: electrospinning, dip-pad-dry and exhaustion. After the confirmation of ZnO NP content and distribution within the textile fibres by morphological and chemical analysis, the samples were evaluated regarding their antimicrobial properties. The functionalised fabrics obtained via dip-pad-dry unveiled the most promising data, with 0.017 ± 0.013wt% ZnO NPs being mostly located at the fibre's surface and capable of total eradication of Staphylococcus aureus and Escherichia coli colonies within the tested 24 h (ISO 22196 standard), as well as significantly contributing (**** p < 0.0001) to the growth inhibition of the bacteriophage MS2, a surrogate of the SARS-CoV-2 virus (ISO 18184 standard). A three-layered structure was assembled and thermoformed to obtain facemasks combining the previously chosen NWF, and its resulting antimicrobial capacity, filtration efficiency and breathability (NP EN ISO 149) were assessed. The developed three-layered and multiscaled fibrous structures with antimicrobial capacities hold immense potential as active individual protection facemasks.
Collapse
Affiliation(s)
- Tânia Ferreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Alexandra C. Pinto
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Rita V. Costa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Diana Sousa
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - José Guilherme Dias
- Poleva—Termoconformados, S.A. Rua da Estrada 1939, 4610-744 Felgueiras, Portugal;
| | - Inês P. Moreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Carlos Mota
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Joana C. Antunes
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
3
|
Castillo L, Lescano L, Marfil S, Barbosa S. Hydrophilic cloth by surface modification of polypropylene fabrics with mineral particles. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Luciana Castillo
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Leticia Lescano
- Departamento de Geología Universidad Nacional del Sur (UNS) – CGAMA (CIC‐UNS) Bahía Blanca Argentina
| | - Silvina Marfil
- Departamento de Geología Universidad Nacional del Sur (UNS) – CGAMA (CIC‐UNS) Bahía Blanca Argentina
| | - Silvia Barbosa
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|
4
|
Nejman A, Baranowska-Korczyc A, Ranoszek-Soliwoda K, Jasińska I, Celichowski G, Cieślak M. Silver Nanowires and Silanes in Hybrid Functionalization of Aramid Fabrics. Molecules 2022; 27:1952. [PMID: 35335318 PMCID: PMC8954008 DOI: 10.3390/molecules27061952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
New functionalization methods of meta- and para-aramid fabrics with silver nanowires (AgNWs) and two silanes (3-aminopropyltriethoxysilane (APTES)) and diethoxydimethylsilane (DEDMS) were developed: a one-step method (mixture) with AgNWs dispersed in the silane mixture and a two-step method (layer-by-layer) in which the silanes mixture was applied to the previously deposited AgNWs layer. The fabrics were pre-treated in a low-pressure air radio frequency (RF) plasma and subsequently coated with polydopamine. The modified fabrics acquired hydrophobic properties (contact angle ΘW of 112-125°). The surface free energy for both modified fabrics was approximately 29 mJ/m2, while for reference, meta- and para-aramid fabrics have a free energy of 53 mJ/m2 and 40 mJ/m2, respectively. The electrical surface resistance (Rs) was on the order of 102 Ω and 104 Ω for the two-step and one-step method, respectively. The electrical volume resistance (Rv) for both modified fabrics was on the order of 102 Ω. After UV irradiation, the Rs did not change for the two-step method, and for the one-step method, it increased to the order of 1010 Ω. The specific strength values were higher by 71% and 63% for the meta-aramid fabric and by 102% and 110% for the para-aramid fabric for the two-step and one-step method, respectively, compared to the unmodified fabrics after UV radiation.
Collapse
Affiliation(s)
- Alicja Nejman
- Łukasiewicz Research Network–Textile Research Institute, Brzezinska St. 5/15, 92-103 Lodz, Poland; (A.N.); (A.B.-K.); (I.J.)
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska St. 163, 90-236 Lodz, Poland; (K.R.-S.); (G.C.)
| | - Anna Baranowska-Korczyc
- Łukasiewicz Research Network–Textile Research Institute, Brzezinska St. 5/15, 92-103 Lodz, Poland; (A.N.); (A.B.-K.); (I.J.)
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska St. 163, 90-236 Lodz, Poland; (K.R.-S.); (G.C.)
| | - Izabela Jasińska
- Łukasiewicz Research Network–Textile Research Institute, Brzezinska St. 5/15, 92-103 Lodz, Poland; (A.N.); (A.B.-K.); (I.J.)
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska St. 163, 90-236 Lodz, Poland; (K.R.-S.); (G.C.)
| | - Małgorzata Cieślak
- Łukasiewicz Research Network–Textile Research Institute, Brzezinska St. 5/15, 92-103 Lodz, Poland; (A.N.); (A.B.-K.); (I.J.)
| |
Collapse
|