1
|
Liu F, Christou A, Dahiya AS, Dahiya R. From Printed Devices to Vertically Stacked, 3D Flexible Hybrid Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411151. [PMID: 39888128 PMCID: PMC11899526 DOI: 10.1002/adma.202411151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/17/2024] [Indexed: 02/01/2025]
Abstract
The pursuit of miniaturized Si electronics has revolutionized computing and communication. During recent years, the value addition in electronics has also been achieved through printing, flexible and stretchable electronics form factors, and integration over areas larger than wafer size. Unlike Si semiconductor manufacturing which takes months from tape-out to wafer production, printed electronics offers greater flexibility and fast-prototyping capabilities with lesser resources and waste generation. While significant advances have been made with various types of printed sensors and other passive devices, printed circuits still lag behind Si-based electronics in terms of performance, integration density, and functionality. In this regard, recent advances using high-resolution printing coupled with the use of high mobility materials and device engineering, for both in-plane and out-of-plane integration, raise hopes. This paper focuses on the progress in printed electronics, highlighting emerging printing technologies and related aspects such as resource efficiency, environmental impact, integration scale, and the novel functionalities enabled by vertical integration of printed electronics. By highlighting these advances, this paper intends to reveal the future promise of printed electronics as a sustainable and resource-efficient route for realizing high-performance integrated circuits and systems.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
- Microsystems Technology UnitCentre for Sensors & DevicesFondazione Bruno Kessler (FBK)Via Sommarive, 18Trento38123Italy
| | - Adamos Christou
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
| | - Abhishek Singh Dahiya
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
| | - Ravinder Dahiya
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
2
|
Lee Y, Carnicer-Lombarte A, Han S, Woodington BJ, Chai S, Polyravas AG, Velasco-Bosom S, Kim EH, Malliaras GG, Jung S. Tunable Organic Active Neural Probe Enabling Near-Sensor Signal Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301782. [PMID: 37212503 DOI: 10.1002/adma.202301782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Neural recording systems have significantly progressed to provide an advanced understanding and treatment for neurological diseases. Flexible transistor-based active neural probes exhibit great potential in electrophysiology applications due to their intrinsic amplification capability and tissue-compliant nature. However, most current active neural probes exhibit bulky back-end connectivity since the output is current, and the development of an integrated circuit for voltage output is crucial for near-sensor signal processing at the abiotic/biotic interface. Here, inkjet-printed organic voltage amplifiers are presented by monolithically integrating organic electrochemical transistors and thin-film polymer resistors on a single, highly flexible substrate for in vivo brain activity recording. Additive inkjet printing enables the seamless integration of multiple active and passive components on the somatosensory cortex, leading to significant noise reduction over the externally connected typical configuration. It also facilitates fine-tuning of the voltage amplification and frequency properties. The organic voltage amplifiers are validated as electrocorticography devices in a rat in vivo model, showing their ability to record local field potentials in an experimental model of spontaneous and epileptiform activity. These results bring organic active neural probes to the forefront in applications where efficient sensory data processing is performed at sensor endpoints.
Collapse
Affiliation(s)
- Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Sanggil Han
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ben J Woodington
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Seungjin Chai
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Anastasios G Polyravas
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Santiago Velasco-Bosom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Eun-Hee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, 20 Bodeum 7-ro, Sejong, 30099, Republic of Korea
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Sungjune Jung
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Kim S, Seo J, Choi J, Yoo H. Vertically Integrated Electronics: New Opportunities from Emerging Materials and Devices. NANO-MICRO LETTERS 2022; 14:201. [PMID: 36205848 PMCID: PMC9547046 DOI: 10.1007/s40820-022-00942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Vertical three-dimensional (3D) integration is a highly attractive strategy to integrate a large number of transistor devices per unit area. This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation. A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades. In this review, we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods, which are suitable for future flexible and wearable electronics. The vertically stacked integrated circuits are reviewed based on the semiconductor materials: organic semiconductors, carbon nanotubes, metal oxide semiconductors, and atomically thin two-dimensional materials including transition metal dichalcogenides. The features, device performance, and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed. Moreover, we highlight recent advances that can be important milestones in the vertically integrated electronics including advanced integrated circuits, sensors, and display systems. There are remaining challenges to overcome; however, we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.
Collapse
Affiliation(s)
- Seongjae Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Juhyung Seo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Junhwan Choi
- Center of Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do, 16890, Republic of Korea.
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
4
|
Kim J, Jo C, Kim MG, Park GS, Marks TJ, Facchetti A, Park SK. Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for High-Resolution and Enhanced Color-Selective Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106215. [PMID: 34632653 DOI: 10.1002/adma.202106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Color-selective multifunctional and multiplexed photodetectors have attracted considerable interest with the increasing demand for color filter-free optoelectronics which can simultaneously process multispectral signal via minimized system complexity. The low efficiency of color-filter technology and conventional laterally pixelated photodetector array structures often limit opportunities for widespread realization of high-density photodetectors. Here, low-temperature solution-processed vertically stacked full color quantum dot (QD) phototransistor arrays are developed on plastic substrates for high-resolution color-selective photosensor applications. Particularly, the three different-sized/color (RGB) QDs are vertically stacked and pixelated via direct photopatterning using a unique chelating chalcometallate ligand functioning both as solubilizing component and, after photoexposure, a semiconducting cement creating robust, insoluble, and charge-efficient QD layers localized in the a-IGZO transistor region, resulting in efficient wavelength-dependent photo-induced charge transfer. Thus, high-resolution vertically stacked full color QD photodetector arrays are successfully implemented with the density of 5500 devices cm-2 on ultrathin flexible polymeric substrates with highly photosensitive characteristics such as photoresponsivity (1.1 × 104 AW-1 ) and photodetectivity (1.1 × 1018 Jones) as well as wide dynamic ranges (>150 dB).
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chanho Jo
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Myung-Gil Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gyeong-Su Park
- Department of Material Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
5
|
Abstract
A new design of quaternary inverter (QNOT gate) is proposed by means of finite-element simulation. Traditionally, increasing the number of data levels in digital logic circuits was achieved by increasing the number of transistors. Our QNOT gate consists of only two transistors, resembling the binary complementary metal-oxide-semiconductor (CMOS) inverter, yet the two additional levels are generated by controlling the charge-injection barrier and electrode overlap. Furthermore, these two transistors are stacked vertically, meaning that the entire footprint only consumes the area of one single transistor. We explore several key geometrical and material parameters in a series of simulations to show how to systematically modulate and optimize the quaternary logic behaviors.
Collapse
|
6
|
Baek S, Kwon J, Mano T, Tokito S, Jung S. A Flexible 3D Organic Preamplifier for a Lactate Sensor. Macromol Biosci 2020; 20:e2000144. [PMID: 32613734 DOI: 10.1002/mabi.202000144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Indexed: 11/06/2022]
Abstract
Organic transistors are promising platforms for wearable biosensors. However, the strategies to improve signal amplification have yet to be determined, particularly regarding biosensors that generate very weak signals. In this study, an organic voltage amplifier is presented for a lactate sensor on flexible plastic foil. The preamplifier is based on a 3D complementary inverter, which is achieved by vertically stacking complementary transistors with a shared gate between them. The shared gate is extended and functionalized with a lactate oxidase enzyme to detect lactate. The sensing device successfully detects the lactate concentration in the human sweat range (20-60 mm) with high sensitivity (6.82 mV mm-1 ) due to high gain of its amplification. The 3D integration process is cost-effective as it is solution-processable and doubles the number of transistors per unit area. The device presented in this study would pave the way for the development of high-gain noninvasive sweat lactate sensors that can be wearable.
Collapse
Affiliation(s)
- Sanghoon Baek
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jimin Kwon
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Taisei Mano
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sungjune Jung
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Wang T, Wang M, Yang L, Li Z, Loh XJ, Chen X. Cyber-Physiochemical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905522. [PMID: 31944425 DOI: 10.1002/adma.201905522] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Living things rely on various physical, chemical, and biological interfaces, e.g., somatosensation, olfactory/gustatory perception, and nervous system response. They help organisms to perceive the world, adapt to their surroundings, and maintain internal and external balance. Interfacial information exchanges are complicated but efficient, delicate but precise, and multimodal but unisonous, which has driven researchers to study the science of such interfaces and develop techniques with potential applications in health monitoring, smart robotics, future wearable devices, and cyber physical/human systems. To understand better the issues in these interfaces, a cyber-physiochemical interface (CPI) that is capable of extracting biophysical and biochemical signals, and closely relating them to electronic, communication, and computing technology, to provide the core for aforementioned applications, is proposed. The scientific and technical progress in CPI is summarized, and the challenges to and strategies for building stable interfaces, including materials, sensor development, system integration, and data processing techniques are discussed. It is hoped that this will result in an unprecedented multi-disciplinary network of scientific collaboration in CPI to explore much uncharted territory for progress, providing technical inspiration-to the development of the next-generation personal healthcare technology, smart sports-technology, adaptive prosthetics and augmentation of human capability, etc.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhuyun Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|
9
|
Photochemical Reduction of Silver Precursor and Elastomer Composite for Flexible and Conductive Patterning. MATERIALS 2019; 12:ma12233809. [PMID: 31756934 PMCID: PMC6926507 DOI: 10.3390/ma12233809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/03/2023]
Abstract
The development of ink-based printing techniques has enabled the fabrication of electric circuits on flexible substrates. Previous studies have shown that the process method which uses a silver (Ag) precursor (AgCF3COO) and electrospun poly(styrene-block-butadiene-block-styrene) (SBS) can yield patterns with high conductivity and stretchability. However, the only method to reduce the Ag precursor absorbed in SBS is chemical reduction using a toxic solution. Here, we developed a process to fabricate a high-conductivity pattern via laser reduction by photo-chemical reaction without toxic solutions. The Ag precursor was absorbed in electrospun SBS to form a composite layer (composite SBS) with modified properties, that could more effectively absorb the photon energy than SBS without the Ag precursor. We analyzed the properties of this material, such as its light absorption coefficient, heat conductivity, and the density of both SBS and composite SBS to allow comparison of the two materials by numerical simulation. In addition, we fabricated patterns on highly heat-sensitive substrates such as burning paper and a polyethylene terephthalate (PET) thin film, as the pattern can be implemented using very low laser energy. We expect the proposed approach to become a key technology for implementing user-designed circuits for wearable sensors and devices on various flexible substrates.
Collapse
|
10
|
Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects. Nat Commun 2019; 10:2424. [PMID: 31160606 PMCID: PMC6546689 DOI: 10.1038/s41467-019-10412-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Multilevel metal interconnects are crucial for the development of large-scale organic integrated circuits. In particular, three-dimensional integrated circuits require a large number of vertical interconnects between layers. Here, we present a novel multilevel metal interconnect scheme that involves solvent-free patterning of insulator layers to form an interconnecting area that ensures a reliable electrical connection between two metals in different layers. Using a highly reliable interconnect method, the highest stacked organic transistors to date, a three-dimensional organic integrated circuits consisting of 5 transistors and 20 metal layers, is successfully fabricated in a solvent-free manner. All transistors exhibit outstanding device characteristics, including a high on/off current ratio of ~107, no hysteresis behavior, and excellent device-to-device uniformity. We also demonstrate two vertically-stacked complementary inverter circuits that use transistors on 4 different floors. All circuits show superb inverter characteristics with a 100% output voltage swing and gain up to 35 V per V. Though large-scale integration of organic transistors into integrated circuits via 3D stacking is a promising approach, reliable methods of device fabrication are still needed. Here, the authors report a metal interconnect scheme for reliable fabrication of 3D integrated organic transistor circuits.
Collapse
|
11
|
Chung S, Cho K, Lee T. Recent Progress in Inkjet-Printed Thin-Film Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801445. [PMID: 30937255 PMCID: PMC6425446 DOI: 10.1002/advs.201801445] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/25/2018] [Indexed: 05/19/2023]
Abstract
Drop-on-demand inkjet printing is one of the most attractive techniques from a manufacturing perspective due to the possibility of fabrication from a digital layout at ambient conditions, thus leading to great opportunities for the realization of low-cost and flexible thin-film devices. Over the past decades, a variety of inkjet-printed applications including thin-film transistors (TFTs), radio-frequency identification devices, sensors, and displays have been explored. In particular, many research groups have made great efforts to realize high-performance TFTs, for application as potential driving components of ubiquitous wearable electronics. Although there are still challenges to enable the commercialization of printed TFTs beyond laboratory-scale applications, the field of printed TFTs still attracts significant attention, with remarkable developments in soluble materials and printing methodology. Here, recent progress in printing-based TFTs is presented from materials to applications. Significant efforts to improve the electrical performance and device-yield of printed TFTs to match those of counterparts fabricated using conventional deposition or photolithography methods are highlighted. Moreover, emerging low-dimension printable semiconductors, including carbon nanotubes and transition metal dichalcogenides as well as mature semiconductors, and new-concept printed switching devices, are also discussed.
Collapse
Affiliation(s)
- Seungjun Chung
- Photo‐Electronic Hybrids Research CenterKorea Institute of Science and TechnologyHwarang‐ro 14‐gil 5Seongbuk‐guSeoul02792South Korea
| | - Kyungjune Cho
- Department of Physics and Astronomy, and Institute of Applied PhysicsSeoul National UniversitySeoul08826South Korea
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied PhysicsSeoul National UniversitySeoul08826South Korea
| |
Collapse
|
12
|
Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. MATERIALS 2018; 11:ma11020268. [PMID: 29425144 PMCID: PMC5848965 DOI: 10.3390/ma11020268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/22/2023]
Abstract
The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations.
Collapse
|
13
|
Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors. Sci Rep 2017; 7:5015. [PMID: 28694528 PMCID: PMC5504072 DOI: 10.1038/s41598-017-04933-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.
Collapse
|
14
|
Kwon J, Takeda Y, Fukuda K, Cho K, Tokito S, Jung S. Three-Dimensional, Inkjet-Printed Organic Transistors and Integrated Circuits with 100% Yield, High Uniformity, and Long-Term Stability. ACS NANO 2016; 10:10324-10330. [PMID: 27786453 DOI: 10.1021/acsnano.6b06041] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we demonstrate three-dimensional (3D) integrated circuits (ICs) based on a 3D complementary organic field-effect transistor (3D-COFET). The transistor-on-transistor structure was achieved by vertically stacking a p-type OFET over an n-type OFET with a shared gate joining the two transistors, effectively halving the footprint of printed transistors. All the functional layers including organic semiconductors, source/drain/gate electrodes, and interconnection paths were fully inkjet-printed except a parylene dielectric which was deposited by chemical vapor deposition. An array of printed 3D-COFETs and their inverter logic gates comprising over 100 transistors showed 100% yield, and the uniformity and long-term stability of the device were also investigated. A full-adder circuit, the most basic computing unit, has been successfully demonstrated using nine NAND gates based on the 3D structure. The present study fulfills the essential requirements for the fabrication of organic printed complex ICs (increased transistor density, 100% yield, high uniformity, and long-term stability), and the findings can be applied to realize more complex digital/analogue ICs and intelligent devices.
Collapse
Affiliation(s)
- Jimin Kwon
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University , 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kenjiro Fukuda
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University , 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University , 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Sungjune Jung
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
15
|
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors. Sci Rep 2016; 6:35585. [PMID: 27762321 PMCID: PMC5071863 DOI: 10.1038/srep35585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 11/08/2022] Open
Abstract
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.
Collapse
|