1
|
Ahmed I, Prakash K, Mobin SM. Lead-free perovskites for solar cell applications: recent progress, ongoing challenges, and strategic approaches. Chem Commun (Camb) 2025; 61:6691-6721. [PMID: 40241537 DOI: 10.1039/d4cc06835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The growing perovskite solar cells (PSC) have reached a power conversion efficiency of up to 25% within a decade and demonstrated the potential to replace traditional silicon-based solar cells. However, a major issue with perovskite solar cells regarding their practical application and commercialization is their lead-based toxicity, which has harmful effects on human health and ecological systems. Thus, lead-free perovskite solar cells have emerged as one of the most promising prospects in perovskite solar cell technology due to their non-toxic nature, optimal stability, and durability. Since their discovery, lead-free perovskite solar cells have achieved a maximum power conversion efficiency of ∼15% and still require further development. In this feature article, we review the recent developments in the field of lead-free perovskite solar cells. We emphasize the advantages and limitations of Pb-free perovskites and the current state of lead-free perovskite solar cells. Furthermore, we discuss the impact of cation and anion sites on the stability and efficiency of lead-free PSCs and provide an update on the progress of lead-free perovskites for photovoltaic applications. Designing environmentally friendly lead-free perovskite devices is an imperative goal, though it comes with significant challenges. This article provides a brief analysis of the challenges and strategies required to improve the stability and efficiency of lead-free perovskites. Finally, we summarize the review to offer a better understanding of lead-free PSCs and outline the direction for further exploration.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.
| | - Kamal Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.
- Center for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India
- Center for Electric Vehicle and Intelligent Transport System (CEVITS), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
2
|
Ma X, Wang N. Open-circuit voltage deficits in Tin-based perovskite solar cells. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:393002. [PMID: 38906134 DOI: 10.1088/1361-648x/ad5ad0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
The power conversion efficiency of Pb-based single-junction perovskite solar cells (PSCs) has surpassed 26%; however, the biocompatibility concerns associated with Pb pose threats to both the environment and living organisms. Consequently, the development of Pb-free PSCs is imperative. Among the various alternatives to Pb-based PSCs, Sn-based PSCs have exhibited outstanding optoelectronic properties, showing great potential for large-scale manufacturing and commercialization. Nevertheless, there remains a significant efficiency gap between Sn-based and Pb-based PSCs. The disparity primarily stems from substantial open-circuit voltage (VOC) deficits in Sn-based PSCs, typically ranging from 0.4 to 0.6 V. The main reason ofVOCdeficits is severe non-radiative recombination losses, which are caused by the uncontrolled crystallization kinetics of Sn halide perovskites and the spontaneous oxidation of Sn2+. This review summarizes the reasons forVOCdeficits in Sn-based PSCs, and the corresponding strategies to mitigate these issues. Additionally, it outlines the persistent challenges and future prospects for Sn-based PSCs, providing guidance to assist researchers in developing more efficient and stable Sn-based perovskites.
Collapse
Affiliation(s)
- Xue Ma
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Ning Wang
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
3
|
Li X, Tang Y, Song B, Meng F, Gao C, Qin L, Hu Y, Lou Z, Teng F, Hou Y. Efficient Tin-Based Perovskite Solar Cell with a Cesium Acetate Pre-buried PEDOT:PSS Hole Transport Layer. J Phys Chem Lett 2024; 15:1355-1362. [PMID: 38286019 DOI: 10.1021/acs.jpclett.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The strong Lewis acid tin halide leads to an excessively fast crystallization rate, resulting in more defects in the film and degraded device performance. In this work, a cesium acetate (CsAc) pre-buried poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer acts as nucleation points during the crystallization of tin-based perovskite, which can induce preferential orientation growth of crystals and increase the grain size to improve the quality of crystallization. The addition of CsAc not only can increase the conductivity of PEDOT:PSS but also can improve the wettability of the perovskite precursor solution to enhance the interface contact between the hole transport layer and perovskite layer. Because of the incorporation of CsAc in PEDOT:PSS, the average short-circuit current density increases from 23.80 to 27.60 mA cm-2. Furthermore, a power conversion efficiency of 10.99% is achieved for a tin-based perovskite solar cell with CsAc-doped PEDOT:PSS as the hole transport layer.
Collapse
Affiliation(s)
- Xiaomeng Li
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Yang Tang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Bo Song
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Fanwen Meng
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Chang Gao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Liang Qin
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Yufeng Hu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Zhidong Lou
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Feng Teng
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| | - Yanbing Hou
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
4
|
Rawat B, Battula VR, Nayak PK, Ghosh D, Kailasam K. Utilizing the Undesirable Oxidation of Lead-Free Hybrid Halide Perovskite Nanosheets for Solar-Driven Photocatalytic C(sp 3)─H Activation: Unraveling the Serendipity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53604-53613. [PMID: 37937526 DOI: 10.1021/acsami.3c14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hybrid halide perovskites (HHPs), whose every branch generates intrusiveness, have been utilized in solar cells from a broader perspective. However, the inclusiveness of employing HHP as a photocatalyst is in its initial stage. This study mainly focuses on the unexpected utilization of, so far, undesirable material vacancy-ordered MA2SnBr6 quantum dots synthesized from MASnBr3 nanosheets. Here, the quantum confinement grounded a large blue shift in ultraviolet (UV) and photoluminescence (PL) spectra with a Stokes shift of 420 meV, where the band gap increase is observed as size decreases in MA2SnBr6. Remarkably, MA2SnBr6 exhibits air and moisture stability, better charge transfer, and high oxidation potential compared to MASnBr3. The first-principles-based atomistic computations reveal the strain relaxation in the Sn-Br framework that structurally stabilizes the MA2SnBr6 lattice. Furthermore, the direct band gap and strongly localized valence band edge give rise to a new potential photocatalyst MA2SnBr6 for efficient solar-driven C(sp3)─H activation of cyclohexane and toluene under ambient conditions.
Collapse
Affiliation(s)
- Bhawna Rawat
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, SAS Nagar, Manauli PO, 140306 Mohali, Punjab, India
| | - Venugopala Rao Battula
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, SAS Nagar, Manauli PO, 140306 Mohali, Punjab, India
| | - Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, SAS Nagar, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
5
|
Chen W, Liu G, Dong C, Guan X, Gao S, Hao J, Chen C, Lu P. Investigation of Vacancy-Ordered Double Perovskite Halides A 2Sn 1-xTi xY 6 (A = K, Rb, Cs; Y = Cl, Br, I): Promising Materials for Photovoltaic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2744. [PMID: 37887895 PMCID: PMC10609051 DOI: 10.3390/nano13202744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023]
Abstract
In the present study, the structural, mechanical, electronic and optical properties of all-inorganic vacancy-ordered double perovskites A2Sn1-xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) are explored by density functional theory. The structural and thermodynamic stabilities are confirmed by the tolerance factor and negative formation energy. Moreover, by doping Ti ions into vacancy-ordered double perovskite A2SnY6, the effect of Ti doping on the electronic and optical properties was investigated in detail. Then, according to the requirement of practical applications in photovoltaics, the optimal concentration of Ti ions and the most suitable halide element are determined to screen the right compositions. In addition, the mechanical, electronic and optical properties of the selected compositions are discussed, exhibiting the maximum optical absorption both in the visible and ultraviolet energy ranges; thus, the selected compositions can be considered as promising materials for application in solar photovoltaics. The results suggest a great potential of A2Sn1-xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) for further theoretical research as well as experimental research on the photovoltaic performance of stable and toxic-free perovskite solar cells.
Collapse
Affiliation(s)
- Wen Chen
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Gang Liu
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Chao Dong
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China; (C.D.); (X.G.); (P.L.)
| | - Xiaoning Guan
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China; (C.D.); (X.G.); (P.L.)
| | - Shuli Gao
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Jinbo Hao
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Changcheng Chen
- School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China; (W.C.); (S.G.); (J.H.)
| | - Pengfei Lu
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China; (C.D.); (X.G.); (P.L.)
| |
Collapse
|
6
|
Li P, Cao X, Li J, Jiao B, Hou X, Hao F, Ning Z, Bian Z, Xi J, Ding L, Wu Z, Dong H. Ligand Engineering in Tin-Based Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:167. [PMID: 37395847 PMCID: PMC10317948 DOI: 10.1007/s40820-023-01143-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
Perovskite solar cells (PSCs) have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency. However, their large-scale application and commercialization are limited by the toxicity issue of lead (Pb). Among all the lead-free perovskites, tin (Sn)-based perovskites have shown potential due to their low toxicity, ideal bandgap structure, high carrier mobility, and long hot carrier lifetime. Great progress of Sn-based PSCs has been realized in recent years, and the certified efficiency has now reached over 14%. Nevertheless, this record still falls far behind the theoretical calculations. This is likely due to the uncontrolled nucleation states and pronounced Sn (IV) vacancies. With insights into the methodologies resolving both issues, ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs. Herein, we summarize the role of ligand engineering during each state of film fabrication, ranging from the starting precursors to the ending fabricated bulks. The incorporation of ligands to suppress Sn2+ oxidation, passivate bulk defects, optimize crystal orientation, and improve stability is discussed, respectively. Finally, the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented. We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.
Collapse
Affiliation(s)
- Peizhou Li
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiangrong Cao
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jingrui Li
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices (MoE), Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
7
|
Gassara M, Hemasiri NH, Kazim S, Costantino F, Naïli H, Ahmad S. Uncovering the Role of Electronic Doping in Lead-free Perovskite (CH 3 NH 3 ) 2 CuCl 4-x Br x and Solar Cells Fabrication. CHEMSUSCHEM 2023; 16:e202202313. [PMID: 37075747 DOI: 10.1002/cssc.202202313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Indexed: 05/03/2023]
Abstract
Lead halide perovskites are attractive pigments to fabricate solar cells in the laboratory, owing to their high power conversion efficiency. However, given the presence of Pb, such materials also have a high level of toxicity and are carcinogenic for humans and aquatic life. Arguably, this hampers their acceptability for immediate commercialization. This study entails the synthesis, optoelectronic properties, and photovoltaic parameters of two-dimensional copper-based perovskites as an environmentally benign alternative to lead-based perovskites. The perovskites - (CH3 NH3 )2 CuCl4-x Brx with x=0.3 and 0.66 - are derivatives of the stable (CH3 NH3 )2 CuCl4 . The single crystals and powders diffractograms suggest compositions with variations in Cl/Br ratio and dissimilar bromine localization in the inorganic framework. The copper mixed halide perovskite exhibits a narrow absorption with a bandgap of 2.54-2.63 eV related to the halide ratio disparity (crystal color variation). These findings demonstrate the impact of halides to optimize the stability of methylammonium copper perovskites and provide an effective pathway to design eco-friendly perovskites for optoelectronic applications.
Collapse
Affiliation(s)
- Mahdi Gassara
- Laboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000, Sfax, Tunisia
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Naveen Harindu Hemasiri
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Samrana Kazim
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Ferdinando Costantino
- Department of Chemistry Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Houcine Naïli
- Laboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Shahzada Ahmad
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
8
|
Rowińska M, Piecha-Bisiorek A, Medycki W, Durlak P, Jakubas R, Gagor A. Structural, Electric and Dynamic Properties of (Pyrrolidinium) 3[Bi 2I 9] and (Pyrrolidinium) 3[Sb 2I 9]: New Lead-Free, Organic-Inorganic Hybrids with Narrow Band Gaps. Molecules 2023; 28:molecules28093894. [PMID: 37175304 PMCID: PMC10180494 DOI: 10.3390/molecules28093894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hybrid organic-inorganic iodides based on Bi(III) and Sb(III) provide integrated functionalities through the combination of high dielectric constants, semiconducting properties and ferroic phases. Here, we report a pyrrolidinium-based bismuth (1) and antimony (2) iodides of (NC4H10)3[M2I9] (M: Bi(III), Sb(III)) formula which are ferroelastic at room temperature. The narrow band gaps (~2.12 eV for 1 and 2.19 eV for 2) and DOS calculations indicate the semiconducting characteristics of both materials. The crystal structure consists of discrete, face-sharing bioctahedra [M2I9]3- and disordered pyrrolidinium amines providing charge balance and acting as spacers between inorganic moieties. At room temperature, 1 and 2 accommodate orthorhombic Cmcm symmetry. 1 displays a complex temperature-induced polymorphism. It is stable up to 525 K and undergoes a sequence of low-temperature phase transitions (PTs) at 221/222 K (I ↔ II) and 189/190 K (II ↔ III) and at 131 K (IV→III), associated with the ordering of pyrrolidinium cations and resulting in Cmcm symmetry breaking. 2 undergoes only one PT at T = 215 K. The dielectric studies disclose a relaxation process in the kilohertz frequency region, assigned to the dynamics of organic cations, described well by the Cole-Cole relation. A combination of single-crystal X-ray diffraction, synchrotron powder diffraction, spin-lattice relaxation time of 1H NMR, dielectric and calorimetric studies is used to determine the structural phase diagram, cation dynamics and electric properties of (NC4H10)3[M2I9].
Collapse
Affiliation(s)
- Magdalena Rowińska
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Science, P.O. Box 1410, 50-950 Wrocław, Poland
| | - Anna Piecha-Bisiorek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Wojciech Medycki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Piotr Durlak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Anna Gagor
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Science, P.O. Box 1410, 50-950 Wrocław, Poland
| |
Collapse
|
9
|
Liu Z, Zhou B, Fang S, Nie J, Zhong H, Hu H, Li H, Shi Y. Modulation of the Excitation States in All-Inorganic Halide Perovskites via Sb 3+ and Bi 3+ Codoping. J Phys Chem Lett 2023; 14:1022-1028. [PMID: 36693161 DOI: 10.1021/acs.jpclett.2c03658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sb3+-doped halide perovskites are promising candidates for solid-state lighting due to their diverse fluorescent colors and high efficiency. However, the mismatched high excitation energy with commercial UV chips is one of the critical issues to be addressed. Herein, a Bi3+ codoping strategy was established as a general and efficient approach to modulate the excitation spectrum from the Sb3+-doping center in all-inorganic perovskites of Cs2InCl5·H2O, Cs2NaInCl6, and Rb3InCl6. The incorporated Bi3+ greatly enhanced the splitting of the A band (1S0-3P1 transition) and boosts the enormous redshift of the low-energy branch in all these systems. The interactions persist strongly even at extremely low doping concentrations, suggesting a dipole-based long-range interaction. The results provide an in-depth insight into the contribution mechanism of Bi3+ to Sb3+ in all-inorganic perovskites, which throws light upon tuning the excitation spectrum of broadband emission from the extrinsic self-trapped exciton (STE).
Collapse
Affiliation(s)
- Zexiang Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bo Zhou
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shaofan Fang
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
| | - Jingheng Nie
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, P. R. China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
10
|
Lye YE, Chan KY, Ng ZN. A Review on the Progress, Challenges, and Performances of Tin-Based Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:585. [PMID: 36770546 PMCID: PMC9920041 DOI: 10.3390/nano13030585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
In this twenty-first century, energy shortages have become a global issue as energy demand is growing at an astounding rate while the energy supply from fossil fuels is depleting. Thus, the urge to develop sustainable renewable energy to replace fossil fuels is significant to prevent energy shortages. Solar energy is the most promising, accessible, renewable, clean, and sustainable substitute for fossil fuels. Third-generation (3G) emerging solar cell technologies have been popular in the research field as there are many possibilities to be explored. Among the 3G solar cell technologies, perovskite solar cells (PSCs) are the most rapidly developing technology, making them suitable for generating electricity efficiently with low production costs. However, the toxicity of Pb in organic-inorganic metal halide PSCs has inherent shortcomings, which will lead to environmental contamination and public health problems. Therefore, developing a lead-free perovskite solar cell is necessary to ensure human health and a pollution-free environment. This review paper summarized numerous types of Sn-based perovskites with important achievements in experimental-based studies to date.
Collapse
Affiliation(s)
- Yuen-Ean Lye
- School of Electrical Engineering and Artificial Intelligence, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Kah-Yoong Chan
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia
| | - Zi-Neng Ng
- School of Electrical Engineering and Artificial Intelligence, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| |
Collapse
|
11
|
Yu Y, Zhou W, Li C, Han P, Li H, Zhao K. Tb 3+ and Bi 3+ Co-Doping of Lead-Free Cs 2NaInCl 6 Double Perovskite Nanocrystals for Tailoring Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:549. [PMID: 36770511 PMCID: PMC9921054 DOI: 10.3390/nano13030549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Lead halide perovskites have achieved remarkable success in various photovoltaic and optoelectronic applications, especially solar cells and light-emitting diodes (LEDs). Despite the significant advances of lead halide perovskites, lead toxicity and insufficient stability limit their commercialization. Lead-free double perovskites (DPs) are potential materials to address these issues because of their non-toxicity and high stability. By doping DP nanocrystals (NCs) with lanthanide ions (Ln3+), it is possible to make them more stable and impart their optical properties. In this work, a variable temperature hot injection method is used to synthesize lead-free Tb3+-doped Cs2NaInCl6 DP NCs, which exhibit a major narrow green photoluminescence (PL) peak at 544 nm derived from the transition of Tb3+ 5D4→7F5. With further Bi3+ co-doping, the Tb3+-Bi3+-co-doped Cs2NaInCl6 DP NCs are not only directly excited at 280 nm but are also excited at 310 nm and 342 nm. The latter have a higher PL intensity because partial Tb3+ ions are excited through more efficient energy transfer channels from the Bi3+ to the Tb3+ ions. The investigation of the underlying mechanism between the intrinsic emission of Cs2NaInCl6 NCs and the narrow green PL caused by lanthanide ion doping in this paper will facilitate the development of lead-free halide perovskite NCs.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing & Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Zhou
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing & Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cheng Li
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing & Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Peigeng Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Hui Li
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing & Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kun Zhao
- Institute of Ultrafast Optical Physics, MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing & Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
12
|
Ghorpade UV, Suryawanshi MP, Green MA, Wu T, Hao X, Ryan KM. Emerging Chalcohalide Materials for Energy Applications. Chem Rev 2023; 123:327-378. [PMID: 36410039 PMCID: PMC9837823 DOI: 10.1021/acs.chemrev.2c00422] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Semiconductors with multiple anions currently provide a new materials platform from which improved functionality emerges, posing new challenges and opportunities in material science. This review has endeavored to emphasize the versatility of the emerging family of semiconductors consisting of mixed chalcogen and halogen anions, known as "chalcohalides". As they are multifunctional, these materials are of general interest to the wider research community, ranging from theoretical/computational scientists to experimental materials scientists. This review provides a comprehensive overview of the development of emerging Bi- and Sb-based as well as a new Cu, Sn, Pb, Ag, and hybrid organic-inorganic perovskite-based chalcohalides. We first highlight the high-throughput computational techniques to design and develop these chalcohalide materials. We then proceed to discuss their optoelectronic properties, band structures, stability, and structural chemistry employing theoretical and experimental underpinning toward high-performance devices. Next, we present an overview of recent advancements in the synthesis and their wide range of applications in energy conversion and storage devices. Finally, we conclude the review by outlining the impediments and important aspects in this field as well as offering perspectives on future research directions to further promote the development of chalcohalide materials in practical applications in the future.
Collapse
Affiliation(s)
- Uma V. Ghorpade
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- School
of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mahesh P. Suryawanshi
- School
of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martin A. Green
- School
of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tom Wu
- School
of Materials Science and Engineering, University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiaojing Hao
- School
of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kevin M. Ryan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
13
|
Han L, Wu Q, Lei L, Chen J, Xue N. Influence of interaction between organic cation and inorganic unit in bi-based hybrid perovskites for photoelectronic properties. Heliyon 2022; 8:e12528. [PMID: 36593821 PMCID: PMC9803823 DOI: 10.1016/j.heliyon.2022.e12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
With the increase of the passion on lead-free perovskites, more and more endeavor focused on halobismuthates. Here, we have introduced the p-iodoaniline and p-phenylenediamine into Bi-based hybrid materials, and two photoactive iodobismuthate named p-phenylenediamine iodobismuthate (PDABI) and p-iodoaniline iodobismuthate (PIDBI) were prepared. Their single structures, band gaps, thermostability and other properties were explored. The structure results revealed that they all have 1D BiI4 - anion chains with edge-shared BiI6 octahedron. The DFT result revealed that PIDBI had an inherent interaction between the I substituent in p-iodoaniline cation and the Bi atom in inorganic BiI4 - anion chains. The photodetector assembled by PDABI and PIDBI revealed that the interaction provided by symmetric p-phenylenediamine has a positive effect on PIDBI's optoelectronic properties compared to the role of asymmetric p-iodoaniline in PDABI.
Collapse
Affiliation(s)
- Liuyuan Han
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong 266101, China,Corresponding author.
| | - Qian Wu
- School of Physics, Shandong University, Shandong 250100, China
| | - Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| | - Jinghang Chen
- State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| | - Ni Xue
- State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| |
Collapse
|
14
|
Hamukwaya SL, Hao H, Mashingaidze MM, Zhong T, Tang S, Dong J, Xing J, Liu H. Potassium Iodide-Modified Lead-Free Cs 3Bi 2I 9 Perovskites for Enhanced High-Efficiency Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3751. [PMID: 36364527 PMCID: PMC9654913 DOI: 10.3390/nano12213751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Lead-free, bismuth-based perovskite solar cells (PSCs) are promising, non-toxic, and stable alternatives to lead-based PSCs, which are environmentally harmful and highly unstable under deprived air conditions. However, bismuth-based PSCs still suffer from low-power-conversion efficiency (PCE) due to their large bandgap and poor film morphology. Their poor film-forming ability is the greatest obstacle to Cs₃Bi₂I₉ progress in thin-film solar cell technology. This study synthesizes novel, lead-free perovskites with a small bandgap, excellent stability, and highly improved photovoltaic performance by integrating different amounts of potassium iodide (KI) into a perovskite precursor solution. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the potential contact distribution, which is demonstrated by X-ray diffraction, electronic scanning microscopy, atomic force microscopy, and ultraviolet-visible spectroscopy. The Cs₃Bi₂I₉ PSC device with 2 vol. % incorporation of KI shows the highest PCE of 2.81% and Voc of 1.01 V as far as all the Bi-based cells fabricated for this study are concerned. The study demonstrates that incorporating KI in the Cs₃Bi₂I₉ perovskite layer highly stabilizes the resultant PSC device against humidity to the extent that it maintains 98% of the initial PCE after 90 days, which is suitable for solar cell applications. The devices also demonstrate greater resistance to airborne contaminants and high temperatures without encapsulation, opening up new possibilities for lead-free Cs₃Bi₂I₉ PSCs in future commercialization.
Collapse
Affiliation(s)
- Shindume Lomboleni Hamukwaya
- School of Science, China University of Geosciences, Beijing 100083, China
- Department of Mechanical & Metallurgical Engineering, School of Engineering & the Built Environment, University of Namibia, Ongwediva 33004, Namibia
| | - Huiying Hao
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Melvin Mununuri Mashingaidze
- Department of Mechanical & Metallurgical Engineering, School of Engineering & the Built Environment, University of Namibia, Ongwediva 33004, Namibia
| | - Tingting Zhong
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Shu Tang
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Jingjing Dong
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Jie Xing
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
15
|
Zhao X, Tao Y, Dong J, Fang Y, Song X, Yan Z. Cs 3Cu 2I 5/ZnO Heterostructure for Flexible Visible-Blind Ultraviolet Photodetection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43490-43497. [PMID: 36122367 DOI: 10.1021/acsami.2c11202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable, portable, and biocompatible optoelectronic devices made of all-green and abundant materials and fabricated by low-temperature solution method are the key point in the development of next generation of intelligent optoelectronics. However, this is usually limited by the weaknesses of mono-component materials, such as non-adjustable photoresponse region, high carrier recombination rate, high signal-to-noise ratio, as well as the weak mechanical flexibility of bulk films. In this work, the Cs3Cu2I5/ZnO heterostructure flexible photodetectors were constructed by a low-temperature solution method combined with spin-coating technique. The heterostructure combines the low dark current and strong deep ultraviolet absorption of Cs3Cu2I5 quantum dots with the high carrier mobility of ZnO quantum dots as well as the efficient charge separation of the vertical p-n junction, to improve the photodetection performance. The heterostructure shows enhanced light/dark current ratio and ultraviolet-to-visible rejection ratios. Under an illumination of 280 nm light, an optical detectivity as high as 1.26 × 1011 Jones was obtained; the optical responsivity and response time are much better than those of control devices. After 300 times of 180° bending cycles, the photocurrent had no obvious change. The results demonstrate that the Cs3Cu2I5/ZnO heterostructure has great potential in wearable and portable visible-blind ultraviolet optoelectronic devices.
Collapse
Affiliation(s)
- Xinhong Zhao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Tao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jixiang Dong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongchu Fang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxian Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zaoxue Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Lu H, Long R. Photoinduced Small Hole Polarons Formation and Recombination in All-Inorganic Perovskite from Quantum Dynamics Simulation. J Phys Chem Lett 2022; 13:7532-7540. [PMID: 35947434 DOI: 10.1021/acs.jpclett.2c02211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We conducted ab initio molecular dynamics (AIMD) and nonadiabatic MD to simulate polaron formation and recombination in all-inorganic Cs3Bi2Br9 perovskite. The meticulously designed AIMD simulations show that two types of small hole polaron, including localized and semidelocalized small hole polaron on either an intralayer or an interlayer Br dimer, are adiabatically formed within 1.71 ps. The localized small hole polaron reduces nonadiabatic coupling and decoherence time and, thus, delays charge recombination to 213 ns. In contrast, the dominant semidelocalized polaron increases nonadiabatic coupling by enhancing electron-hole overlap and restores the energy gap and decoherence time to the pristine system, accelerating recombination to 4.7 ns compared to a 10 ns charge carrier lifetime in the pristine system. All the obtained time scales agree well with experiments. The study offers a fundamental understanding of the excited-state dynamics of small hole polaron in Cs3Bi2Br9 and helps to design high-performance perovskite optoelectronics and photovoltaics.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
17
|
Humidity Sensing Applications of Lead-Free Halide Perovskite Nanomaterials. MATERIALS 2022; 15:ma15124146. [PMID: 35744205 PMCID: PMC9230149 DOI: 10.3390/ma15124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Over the past decade, perovskite-based nanomaterials have gained notoriety within the scientific community and have been used for a variety of viable applications. The unique structural properties of these materials, namely good direct bandgap, low density of defects, large absorption coefficient, high sensitivity, long charge carrier lifetime, good selectivity, acceptable stability at room temperature, and good diffusion length have prompted researchers to explore their potential applications in photovoltaics, light-emitting devices, transistors, sensors, and other areas. Perovskite-based devices have shown very excellent sensing performances to numerous chemical and biological compounds in both solid and liquid mediums. When used in sensing devices, Perovskite nanomaterials are for the most part able to detect O2, NO2, CO2, H2O, and other smaller molecules. This review article looks at the use of lead-free halide perovskite materials for humidity sensing. A complete description of the underlying mechanisms and charge transport characteristics that are necessary for a thorough comprehension of the sensing performance will be provided. An overview of considerations and potential recommendations for the creation of new lead-free perovskite nanostructure-based sensors is presented.
Collapse
|
18
|
Fang S, Wang T, He S, Han T, Cai M, Liu B, Korepanov VI, Lang T. Post-doping induced morphology evolution boosts Mn 2+ luminescence in the Cs 2NaBiCl 6:Mn 2+ phosphor. Phys Chem Chem Phys 2022; 24:9866-9874. [PMID: 35363243 DOI: 10.1039/d1cp05903c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As we know, defects caused in the synthetic process of metal halide perovskite are the most difficult to overcome, and greatly limit their photoelectric performances. Herein, a post-doped strategy was utilized to achieve an interesting morphology evolution from a standard octahedron to a snowflake-like sheet during the Mn2+-doped Cs2NaBiCl6 process, which realizes the obvious photoluminescence quantum efficiency (PLQY) enhancement of the Cs2NaBiCl6:Mn2+ phosphor. This surprising evolution is ascribed to the morphology collapse and reconstruction induced by Mn2+ exchange. The obtained phosphor exhibits enhanced 31.56% PLQY, which is two-fold higher than that synthesized by the traditional co-precipitation method, with broad emission spectrum and good PL color stability at 150 °C. Combined with the Cs2SnCl6 : 1mol%Bi3+ phosphor to fabricate the phosphor-converted light-emitting diode, bright white light emission with Ra = 88, CCT = 4320 K, CIE (0.36, 0.33) and a good application potential in high-resolution PL imaging agents was obtained. This work provides a possible effective strategy to improve the PL performance for impurity-doped lead-free metal halide perovskite.
Collapse
Affiliation(s)
- Shuangqiang Fang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Ting Wang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Shuangshuang He
- Chongqing Key Laboratory of Materials Surface & Interface Science, Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Tao Han
- Chongqing Key Laboratory of Materials Surface & Interface Science, Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Mingsheng Cai
- School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Bitao Liu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Vladimir I Korepanov
- School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Tianchun Lang
- Chongqing Key Laboratory of Materials Surface & Interface Science, Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| |
Collapse
|
19
|
Liang L, Xiong Q, Zhang Z, Yu Y, Gao P. Passivating defects via 4-cyanobenzenaminium iodide enables 22.44% efficiency perovskite solar cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Breternitz J, Schorr S. Zinc Germanium Nitrides and Oxide Nitrides: The Influence of Oxygen on Electronic and Structural Properties. Faraday Discuss 2022; 239:219-234. [DOI: 10.1039/d2fd00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc containing ternary nitrides, in particular ZnSnN2 and ZnGeN2, have great potential as earth-abundant and low toxic light-absorbing materials. The incorporation of oxygen in this system – may it be...
Collapse
|
21
|
Di J, Li H, Su J, Yuan H, Lin Z, Zhao K, Chang J, Hao Y. Reveal the Humidity Effect on the Phase Pure CsPbBr 3 Single Crystals Formation at Room Temperature and Its Application for Ultrahigh Sensitive X-Ray Detector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103482. [PMID: 34761562 PMCID: PMC8805584 DOI: 10.1002/advs.202103482] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Indexed: 05/25/2023]
Abstract
Generally, growing phase pure CsPbBr3 single crystals is challenging, and CsPb2 Br5 or Cs4 PbBr6 by-products are usually formed due to the different solubilities of CsBr and PbBr2 in the single solvent. Herein, the growth of high-quality phase pure CsPbBr3 perovskite single crystals at room temperature by a humidity controlled solvent evaporation method is reported first. Meanwhile, the room temperature phase transition process from three dimensional (3D) cubic CsPbBr3 to two dimensional (2D) layered tetragonal CsPb2 Br5 and the detailed mechanism induced by humidity are revealed. Moreover, compared with the organic-inorganic perovskite, the prepared CsPbBr3 single crystals are much more stable under high humidity, which satisfies the long-term working conditions of X-ray detectors. The X-ray detectors based on CsPbBr3 single crystals show a high sensitivity and a low detection limit of 1.89 μGyair s-1 , all of which meet the needs of medical diagnosis.
Collapse
Affiliation(s)
- Jiayu Di
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologyInstitute for Advanced Energy MaterialsSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jie Su
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
| | - Haidong Yuan
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
| | - Kui Zhao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
| | - Jingjing Chang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
- Advanced Interdisciplinary Research Center for Flexible ElectronicsAcademy of Advanced Interdisciplinary ResearchXidian UniversityXi'an710071China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologySchool of MicroelectronicsXidian UniversityXi'an710071China
| |
Collapse
|
22
|
Liu GN, Li MK, Xu RD, Zhang NN, Quan XJ, Qian BJ, Lu YH, Li C. A halogen bonding assembled hybrid copper halide framework as a promising hypotoxicity photodetector. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The first halogen bonding assembled three-dimensional hybrid copper iodide was obtained by a facile and sustainable “All-in-One” synthesis strategy and shows great application potential as a hypotoxicity photodetector.
Collapse
Affiliation(s)
- Guang-Ning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Ming-Kun Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Rang-Dong Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Ning-Ning Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Xin-Jiao Quan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Bing-Jing Qian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yi-Han Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| |
Collapse
|
23
|
Wang X, Shen Q, Chen Y, Ali N, Ren Z, Bi G, Wu H. Self-trapped exciton emission in an Sn(II)-doped all-inorganic zero-dimensional zinc halide perovskite variant. NANOSCALE 2021; 13:15285-15291. [PMID: 34486630 DOI: 10.1039/d1nr04635g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The toxicity of Pb in conventional perovskites impedes the commercialization of their optoelectronic devices. Therefore, the search for comparable Pb-free perovskites is vital and needs urgent attention. Herein, for the first time, we successfully synthesize the Sn(II)-doped Pb-free zinc-based perovskite variant Cs2ZnCl4. The influence of doping is investigated both experimentally and theoretically. Broad bright red emission with a large Stokes shift is observed and attributed to the self-trapped exciton (STE) emission of the doped disphenoidal [SnCl4]2- units in the host matrix, from 3P1 to 1S0. Temperature-dependent photoluminescence (PL) shows a peak split at cryogenic temperature, which is ascribed to the Jahn-Teller effect of the 3P1 state. Theoretical study reveals that the impurity states of Sn2+ shrink the bandgap and localize the band edges, and distortion of [SnCl4]2- under excitation ultimately leads to the STE emission. This work is significant for STE emission studies and will pave a way for Pb-free perovskite variants in illumination applications.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China.
| | - Qibin Shen
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China.
| | - Yansong Chen
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China.
| | - Nasir Ali
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China.
| | - Ziyang Ren
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China.
| | - Gang Bi
- School of Information & Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, PR China.
| | - Huizhen Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
24
|
Zhang Y, Ma Y, Wang Y, Zhang X, Zuo C, Shen L, Ding L. Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006691. [PMID: 34028107 DOI: 10.1002/adma.202006691] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Indexed: 05/24/2023]
Abstract
State-of-the-art photodetectors which apply hybrid perovskite materials have emerged as powerful candidates for next-generation light sensing. Among them, lead-based ones are the most popular beyond doubt on account of their unique and superior optoelectronic properties. Nevertheless, trade-off toward commercialization exists between nontoxicity and high performance, with the poor stability of lead-based perovskites, indicating that it is indispensable to substitute lead with nontoxic element meanwhile bringing about a comparable figure of merit of photodetectors and relatively long-term stability. Herein, recent advances in lead-free perovskite photodetectors are reviewed, analyzing the principle while designing new materials and highlighting some remarkable progress, which are comparable, even superior, to lead-based photodetectors. Furthermore, their potential strategy in optical communication, image sensing, narrowband photodetection, etc., is examined and a perspective on developing new materials and photodetectors with superior properties for more practical applications is provided.
Collapse
Affiliation(s)
- Yiqi Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yao Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yaxi Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xindong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
25
|
Chiara R, Morana M, Malavasi L. Germanium-Based Halide Perovskites: Materials, Properties, and Applications. Chempluschem 2021; 86:879-888. [PMID: 34126001 DOI: 10.1002/cplu.202100191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Indexed: 11/09/2022]
Abstract
Perovskites are attracting an increasing interest in the wide community of photovoltaics, optoelectronic, and detection, traditionally relying on lead-based systems. This Minireview provides an overview of the current status of experimental and computational results available on Ge-containing 3D and low-dimensional halide perovskites. While stability issues analogous to those of tin-based materials are present, some strategies to afford this problem in Ge metal halide perovskites (MHPs) for photovoltaics have already been identified and successfully employed, reaching efficiencies of solar devices greater than 7 % at up to 500 h of illumination. Interestingly, some Ge-containing MHPs showed promising nonlinear optical responses as well as quite broad emissions, which are worthy of further investigation starting from the basic materials chemistry perspective, where a large space for properties modulation through compositions/alloying/fnanostructuring is present.
Collapse
Affiliation(s)
- Rossella Chiara
- Department of Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100, Pavia>, Italy
| | - Marta Morana
- Department of Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100, Pavia>, Italy
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100, Pavia>, Italy
| |
Collapse
|
26
|
Lee SY, Yoo SM, Lee HJ. Nanoscale Silver Iodobismuthate Photosensitizer and Its Hybridization with Molecular Dye for Mesoporous TiO 2 Film-based Solid-state Sensitized Solar Cells. CHEM LETT 2021. [DOI: 10.1246/cl.200929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seul-Yi Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Korea
| | - So-Min Yoo
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Korea
| | - Hyo Joong Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
27
|
Li Y, Shi Z, Liang W, Ma J, Chen X, Wu D, Tian Y, Li X, Shan C, Fang X. Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives. MATERIALS HORIZONS 2021; 8:1367-1389. [PMID: 34846447 DOI: 10.1039/d0mh01567a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, metal-halide perovskites have emerged as promising materials for photodetector (PD) applications owing to their superior optoelectronic properties, such as ambipolar charge transport characteristics, high carrier mobility, and so on. In the past few years, rapid progress in lead-based perovskite PDs has been witnessed. However, the critical environmental instability and lead-toxicity seriously hinder their further applications and commercialization. Therefore, searching for environmentally stable and lead-free halide perovskites (LFHPs) to address the above hurdles is certainly a worthwhile subject. In this review, we present a comprehensive overview of currently explored LFHPs with an emphasis on their crystal structures, optoelectronic properties, synthesis and modification methods, as well as the PD applications. LFHPs are classified into four categories according to the replacement strategies of Pb2+, including AB(ii)X3, A3B(iii)2X9, A2B(i)B(iii)'X6, and newly-emerging perovskite derivatives. Then, we give a demonstration of the preliminary achievements and limitations in environment-friendly PDs based on such LFHPs and perovskite derivatives, and also discuss their applications in biological synapses, imaging, and X-ray detection. With the perspective of their properties and current challenges, we provide an outlook for future directions in this rapidly evolving field to achieve high-quality LFHPs and perovskite derivatives for a broader range of fundamental research and practical applications.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin Z, Su Y, Dai R, Liu G, Yang J, Sheng W, Zhong Y, Tan L, Chen Y. Ionic Liquid-Induced Ostwald Ripening Effect for Efficient and Stable Tin-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15420-15428. [PMID: 33759500 DOI: 10.1021/acsami.1c01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tin-based perovskite solar cells (PVSCs) are regarded as the most promising alternative among lead-free PVSCs. However, the rapid crystallization for tin-based perovskite tends to cause inferior film morphology and abundant defect states, which make poor photovoltaic performance. Here, 1-butyl-3-methylimidazolium bromide (BMIBr) ionic liquids (ILs) with strong polarity and a low melting point are first employed to produce the Ostwald ripening effect and obtain high-quality tin-based perovskite films with a large grain size. Meanwhile, the non-radiative recombination ascribed from defect states can also be effectively reduced for BMIBr-treated perovskite films. Consequently, a photoelectric conversion efficiency (PCE) of 10.09% for inverted tin-based PVSCs is attained by the Ostwald ripening effect. Moreover, the unencapsulated devices with BMIBr retain near 85% of the original PCE in a N2 glovebox beyond 1200 h and about 40% of the original PCE after exposure to air for 48 h.
Collapse
Affiliation(s)
- Zhuojia Lin
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yang Su
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Runying Dai
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Gengling Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jia Yang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wangping Sheng
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yang Zhong
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Licheng Tan
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yiwang Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
29
|
Bose R, Yin J, Zheng Y, Yang C, Gartstein YN, Bakr OM, Malko AV, Mohammed OF. Gentle Materials Need Gentle Fabrication: Encapsulation of Perovskites by Gas-Phase Alumina Deposition. J Phys Chem Lett 2021; 12:2348-2357. [PMID: 33656346 DOI: 10.1021/acs.jpclett.0c03729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Metal halide perovskites have attracted tremendous attention as promising materials for future-generation optoelectronic devices. Despite their outstanding optical and transport properties, the lack of environmental and operational stability remains a major practical challenge. One of the promising stabilization avenues is metal oxide encapsulation via atomic layer deposition (ALD); however, the unavoidable reaction of metal precursors with the perovskite surface in conventional ALD leads to degradation and restructuring of the perovskites' surfaces. This Perspective highlights the development of a modified gas-phase ALD technique for alumina encapsulation that not only prevents perovskites' degradation but also significantly improves their optical properties and air stability. The correlation between precise atomic interactions at the perovskite-metal oxide interface with the dramatically enhanced optical properties is supported by density functional theory calculations, which also underlines the widespread applicability of this gentle technique for a variety of perovskite nanostructures unbarring potential opportunities offered by combination of these approaches.
Collapse
Affiliation(s)
- Riya Bose
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jun Yin
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yangzi Zheng
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chen Yang
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yuri N Gartstein
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Osman M Bakr
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Anton V Malko
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Liu P, Han N, Wang W, Ran R, Zhou W, Shao Z. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002582. [PMID: 33511702 DOI: 10.1002/adma.202002582] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Indexed: 05/11/2023]
Abstract
In the last decade, perovskite solar cells (PSCs) have undergone unprecedented rapid development and become a promising candidate for a new-generation solar cell. Among various PSCs, typical 3D halide perovskite-based PSCs deliver the highest efficiency but they suffer from severe instability, which restricts their practical applications. By contrast, the low-dimensional Ruddlesden-Popper (RP) perovskite-based PSCs have recently raised increasing attention due to their superior stability. Yet, the efficiency of RP perovskite-based PSCs is still far from that of the 3D counterparts owing to the difficulty in fabricating high-quality RP perovskite films. In pursuit of high-efficiency RP perovskite-based PSCs, it is critical to manipulate the film formation process to prepare high-quality RP perovskite films. This review aims to provide comprehensive understanding of the high-quality RP-type perovskite film formation by investigating the influential factors. On this basis, several strategies to improve the RP perovskite film quality are proposed via summarizing the recent progress and efforts on the preparation of high-quality RP perovskite film. This review will provide useful guidelines for a better understanding of the crystallization and phase kinetics during RP perovskite film formation process and the design and development of high-performance RP perovskite-based PSCs, promoting the commercialization of PSC technology.
Collapse
Affiliation(s)
- Pengyun Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Ning Han
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
31
|
Zeng F, Tan Y, Hu W, Tang X, Luo Z, Huang Q, Guo Y, Zhang X, Yin H, Feng J, Zhao X, Yang B. Impact of Hydroiodic Acid on Resistive Switching Performance of Lead-Free Cs 3Cu 2I 5 Perovskite Memory. J Phys Chem Lett 2021; 12:1973-1978. [PMID: 33594881 DOI: 10.1021/acs.jpclett.0c03763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we employed lead-free Cs3Cu2I5 perovskite films as the functional layers to construct Al/Cs3Cu2I5/ITO memory devices and systematically investigated the impact on the corresponding resistive switching (RS) performance via adding different amounts of hydroiodic acid (HI) in Cs3Cu2I5 precursor solution. The results demonstrated that the crystallinity and morphology of the Cs3Cu2I5 films can be improved and the resistive switching performance can be modulated by adding an appropriate amount of HI. The obtained Cs3Cu2I5 films by adding 5 μL HI exhibit the fewest lattice defects and flattest surface (RMS = 13.3 nm). Besides, the memory device, utilizing the optimized films, has a low electroforming voltage (1.44 V), a large on/off ratio (∼65), and a long retention time (104 s). The RS performance impacted by adding HI, providing a scientific strategy for improving the RS performance of iodine halide perovskite-based memories.
Collapse
Affiliation(s)
- Fanju Zeng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Yongqian Tan
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Wei Hu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhongtao Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Huang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yuanyang Guo
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaomei Zhang
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Haifeng Yin
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Julin Feng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xusheng Zhao
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Ben Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
32
|
Wang L, Sun H, Sun C, Xu D, Tao J, Wei T, Zhang ZH, Zhang Y, Wang Z, Bi W. Lead-free, stable orange-red-emitting hybrid copper based organic-inorganic compounds. Dalton Trans 2021; 50:2766-2773. [PMID: 33543204 DOI: 10.1039/d0dt04413j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal halide perovskites have been extensively studied recently by virtue of their extraordinary luminescence characteristics. However, they still suffer from severe stability issues, and contain a toxic metal lead. Here, single crystals of (PEA)4Cu4I4, a lead-free orange-red-emitting organic-inorganic copper-halide compound with a photoluminescence quantum yield (PLQY) of 68%, were synthesized via a simple solvent vapor diffusion process with commercially-available phenylethylamine (PEA) as a ligand. The crystals show superior stability to perovskites with retaining 60% of their initial photoluminescence (PL) intensity after 60 days in water, which is due to the hydrophobic nature of PEA and the stable Cu-N bonds. Phase transition is found to take place upon lowering the temperature, which causes a redshift of the PL peak. The emission band is identified to be associated with triplet cluster-centered (CC) excited states because of their shortened Cu-Cu distances, excitation-independent PL and long PL lifetime. In addition, micron-sized oleic acid capped (PEA)4Cu4I4 particles were developed by a hot-injection method, and they possess similar stability to that of bulk crystals. A monochrome LED was further fabricated by employing the as-prepared micron-sized particles as phosphors, demonstrating their potential for optoelectronic applications.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang M, Wang W, Ma B, Shen W, Liu L, Cao K, Chen S, Huang W. Lead-Free Perovskite Materials for Solar Cells. NANO-MICRO LETTERS 2021; 13:62. [PMID: 34138241 PMCID: PMC8187519 DOI: 10.1007/s40820-020-00578-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
The toxicity issue of lead hinders large-scale commercial production and photovoltaic field application of lead halide perovskites. Some novel non- or low-toxic perovskite materials have been explored for development of environmentally friendly lead-free perovskite solar cells (PSCs). This review studies the substitution of equivalent/heterovalent metals for Pb based on first-principles calculation, summarizes the theoretical basis of lead-free perovskites, and screens out some promising lead-free candidates with suitable bandgap, optical, and electrical properties. Then, it reports notable achievements for the experimental studies of lead-free perovskites to date, including the crystal structure and material bandgap for all of lead-free materials and photovoltaic performance and stability for corresponding devices. The review finally discusses challenges facing the successful development and commercialization of lead-free PSCs and predicts the prospect of lead-free PSCs in the future.
Collapse
Affiliation(s)
- Minghao Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Wei Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Ben Ma
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Wei Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Lihui Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Kun Cao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, People's Republic of China.
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, People's Republic of China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
34
|
Ren L, Liang L, Zhang Z, Zhang Z, Xiong Q, Zhao N, Yu Y, Scopelliti R, Gao P. The roles of fused-ring organic semiconductor treatment on SnO 2 in enhancing perovskite solar cell performance. RSC Adv 2021; 11:3792-3800. [PMID: 35424335 PMCID: PMC8694149 DOI: 10.1039/d1ra00090j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
It took only 11 years for the power conversion efficiency (PCE) of perovskite solar cells (PSCs) to increase from 3.8% to 25.2%. It is worth noting that, as a new thin-film solar cell technique, defect passivation at the interface is crucial for the PSCs. Decorating and passivating the interface between the perovskite and electron transport layer (ETL) is an effective way to suppress the recombination of carriers at the interface and improve the PCE of the device. In this work, several acceptor-donor-acceptor (A-D-A) type fused-ring organic semiconductors (FROS) with indacenodithiophene (IDT) or indacenodithienothiophene (IDDT) as the bridging donor moiety and 1,3-diethyl-2-thiobarbituric or 1,1-dicyromethylene-3-indanone as the strong electron-withdrawing units, were deposited on the SnO2 ETL to prepare efficient planar junction PSCs. The PCEs of the PSCs increased from 18.63% for the control device to 19.37%, 19.75%, and 19.32% after modification at the interface by three FROSs. Furthermore, impedance spectroscopy, steady-state and time-resolved photoluminescence spectra elucidated that the interface decorated by FROSs enhance not only the extraction of electrons but also the charge transportation at the interface between the perovskite and ETL. These results can provide significant insights in improving the perovskite/ETL interface and the photovoltaic performance of PSCs.
Collapse
Affiliation(s)
- Lu Ren
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Science Beijing 100049 China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences Xiamen 361021 China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences Xiamen 361021 China
| | - Zhuangzhuang Zhang
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences Xiamen 361021 China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences Xiamen 361021 China
| | - Qiu Xiong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Science Beijing 100049 China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences Xiamen 361021 China
| | - Nan Zhao
- College of Materials Science and Engineering, Huaqiao University 361021 Xiamen China
| | - Yaming Yu
- College of Materials Science and Engineering, Huaqiao University 361021 Xiamen China
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Science Beijing 100049 China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences Xiamen 361021 China
| |
Collapse
|
35
|
Goetz KP, Taylor AD, Hofstetter YJ, Vaynzof Y. Sustainability in Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1-17. [PMID: 33372760 DOI: 10.1021/acsami.0c17269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At a current value of 25.5%, perovskites have reached some of the highest power conversion efficiencies of all single-junction solar cell devices. Researchers, however, are questioning their readiness for the commercial market, citing reasons of the toxicity of the lead-based active layer and instability. Closer examination of the life cycle of perovskite solar cells reveals that there are more areas than just these which should be addressed in order to bring an environmentally friendly and sustainable technology to global use. In this review, we discuss these issues. Life cycle analyses show that high temperature processes, heavy use of organic solvents, and extensive use of certain materials can have high up and downstream consequences in terms of emissions, human and ecotoxicity. We further bring attention to the toxicity of the perovskites themselves, where the most direct analyses suggest that the lead cannot be considered totally safe, despite its small quantity and that replacements such as tin may be more toxic in certain scenarios. As a way to reduce the negative environmental impact, we highlight ways in which researchers have used encapsulation and recycling to extend the life of the entire unit and its components and to prevent lead leakage. We hope this review directs researchers toward new strategies to introduce a clean solar technology to the world.
Collapse
Affiliation(s)
- Katelyn P Goetz
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Alexander D Taylor
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Yvonne J Hofstetter
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Yana Vaynzof
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| |
Collapse
|
36
|
Obila JO, Lei H, Ayieta EO, Ogacho AA, Aduda BO, Wang F. Improving the efficiency and stability of tin-based perovskite solar cells using anilinium hypophosphite additive. NEW J CHEM 2021. [DOI: 10.1039/d1nj00602a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that anilinium hypophosphite can improve the performance and stability of Sn-perovskite solar cells.
Collapse
Affiliation(s)
| | - Hongwei Lei
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
- College of Science
| | | | | | | | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| |
Collapse
|
37
|
Ghosh S, Nim GK, Shankar H, Kar P. Probing the emissive behaviour of the lead-free Cs 2AgBiCl 6 double perovskite with Cu( ii) doping. NEW J CHEM 2021. [DOI: 10.1039/d1nj04518k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cu ion induced change in photoluminescence behaviour of Cs2AgBiCl6 double perovskite.
Collapse
Affiliation(s)
- Sukanya Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Gaurav Kumar Nim
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Hari Shankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| | - Prasenjit Kar
- Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| |
Collapse
|
38
|
Liu GN, Zhao RY, Xu B, Sun Y, Jiang XM, Hu X, Li C. Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54694-54702. [PMID: 33216521 DOI: 10.1021/acsami.0c16107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The employment of hybrid perovskite MAPbX3 (MA = CH3NH3+, X = Br or I) as photocatalysts in a photocatalytic hydrogen evolution reaction represents a promising approach to store solar energy. However, the toxicity of Pb makes these materials difficult to pass environmental evaluation while the intrinsic moisture sensitivity puts forward high anhydrous requirements in photocatalysts synthesis, storage, and application, which further reduces their service life. Herein, we demonstrate a hydrogen-bond-free strategy to synthesize moisture-stable hypotoxic hybrid perovskite for photocatalytic application by replacing traditional protonated countercations with alkylated countercations in a Pb-free hybrid system, which prevents water eroding hybrid perovskites via strong hydrogen bonds. A zero-dimensional Bi-based perovskite (3-ethylbenzo[d]thiazol-3-ium)4Bi2I10 (EtbtBi2I10) was synthesized, which contains dimeric (Bi2I10)4- formed by edge-sharing (BiI6) octahedra being different from the binuclear cluster in widely studied MA3Bi2I9. Theoretical calculations indicate that the electron communication between inorganic and organic moieties is responsible for its broadband absorption with a narrow band gap of 2.04 eV. EtbtBi2I10 exhibits excellent stability in distilled water, moisture air, acid solution, and UV-light irradiation. It shows effective photocatalytic performance in HI splitting to generate hydrogen with the performance comparable with MAPbI3. Introducing electron and hole-transporting channels drastically enhances the photocatalytic reaction.
Collapse
Affiliation(s)
- Guang-Ning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Ruo-Yu Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Bo Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xun Hu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
39
|
Ko Y, Park H, Lee C, Kang Y, Jun Y. Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002196. [PMID: 33048400 DOI: 10.1002/adma.202002196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Hybrid tandem solar cells offer the benefits of low cost and full solar spectrum utilization. Among the hybrid tandem structures explored to date, the most popular ones have four (simple stacking design) or two (terminal/tunneling layer addition design) terminal electrodes. Although the latter design is more cost-effective than the former, its widespread application is hindered by the difficulty of preparing an interface between two solar cell materials. The oldest approach to the in-series bonding of two or more bandgap solar cells relies on the introduction of a tunneling layer in multijunction III-V solar cells, but it has some limitations, e.g., the related materials/technologies are applicable only to III-V and certain other solar cells. Thus, alternative methods of realizing junction contacts based on the use of novel materials are highly sought after. Here, the strategies used to realize high-performance tandem cells are described, focusing on interface control in terms of bonding two or more solar cells for tandem approaches. The presented information is expected to aid the establishment of ideal methods of connecting two or more solar cells to obtain the highest performance for different solar cell choices with minimized energy loss through the interface.
Collapse
Affiliation(s)
- Yohan Ko
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - HyunJung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chanyong Lee
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Yoonmook Kang
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Yongseok Jun
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
40
|
Yang H, Shi W, Cai T, Hills-Kimball K, Liu Z, Dube L, Chen O. Synthesis of lead-free Cs 4(Cd 1-xMn x)Bi 2Cl 12 (0 ≤ x ≤ 1) layered double perovskite nanocrystals with controlled Mn-Mn coupling interaction. NANOSCALE 2020; 12:23191-23199. [PMID: 33201164 DOI: 10.1039/d0nr06771g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs4M(ii)Bi2Cl12 (M(ii) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs4M(ii)Bi2Cl12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn-Mn coupling effect of the Cs4M(ii)Bi2Cl12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn2+ dopant emission in NCs. Diluting the Mn2+ ion concentration through forming Cs4(Cd1-xMnx)Bi2Cl12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.
Collapse
Affiliation(s)
- Hanjun Yang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Piveteau L, Morad V, Kovalenko MV. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. J Am Chem Soc 2020; 142:19413-19437. [PMID: 32986955 PMCID: PMC7677932 DOI: 10.1021/jacs.0c07338] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Two- and three-dimensional lead-halide perovskite (LHP) materials are novel semiconductors that have generated broad interest owing to their outstanding optical and electronic properties. Characterization and understanding of their atomic structure and structure-property relationships are often nontrivial as a result of the vast structural and compositional tunability of LHPs as well as the enhanced structure dynamics as compared with oxide perovskites or more conventional semiconductors. Nuclear magnetic resonance (NMR) spectroscopy contributes to this thrust through its unique capability of sampling chemical bonding element-specifically (1/2H, 13C, 14/15N, 35/37Cl, 39K, 79/81Br, 87Rb, 127I, 133Cs, and 207Pb nuclei) and locally and shedding light onto the connectivity, geometry, topology, and dynamics of bonding. NMR can therefore readily observe phase transitions, evaluate phase purity and compositional and structural disorder, and probe molecular dynamics and ionic motion in diverse forms of LHPs, in which they can be used practically, ranging from bulk single crystals (e.g., in gamma and X-ray detectors) to polycrystalline films (e.g., in photovoltaics, photodetectors, and light-emitting diodes) and colloidal nanocrystals (e.g., in liquid crystal displays and future quantum light sources). Herein we also outline the immense practical potential of nuclear quadrupolar resonance (NQR) spectroscopy for characterizing LHPs, owing to the strong quadrupole moments, good sensitivity, and high natural abundance of several halide nuclei (79/81Br and 127I) combined with the enhanced electric field gradients around these nuclei existing in LHPs as well as the instrumental simplicity. Strong quadrupole interactions, on one side, make 79/81Br and 127I NMR rather impractical but turn NQR into a high-resolution probe of the local structure around halide ions.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- CNRS,
UPR 3079, CEMHTI, Orléans, 45071 Cedex 02, France
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
42
|
Wang X, Ali N, Bi G, Wang Y, Shen Q, Rahimi-Iman A, Wu H. Lead-Free Antimony Halide Perovskite with Heterovalent Mn 2+ Doping. Inorg Chem 2020; 59:15289-15294. [PMID: 33026222 DOI: 10.1021/acs.inorgchem.0c02252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lead toxicity is hindering the applications of conventional lead halide perovskites (PVKs), and antimony (Sb) is a promising nontoxic Pb alternative, showing huge potential in optoelectronic devices. Herein, pure and Mn-doped Cs3Sb2Cl9 crystals are synthesized in a facile route and studied both experimentally and theoretically. All the pure and Mn-doped Cs3Sb2Cl9 crystals show good crystallinity and similar crystal structures, exhibiting visible photoluminescence (PL) characteristics with emission peaks at 422 and 613 nm, respectively. Combined density functional theory (DFT) calculations and experimental analyses reveal that the structure of the host PVK compound Cs3Sb2Cl9 is not influenced by the formation of [MnCl6]4- octahedra and that Mn 3d orbitals generate impurity states in the forbidden energy gap of Cs3Sb2Cl9. Therefore, energy transfer from Cs3Sb2Cl9 to Mn 3d states is observed, resulting in the d-d transition and bright red luminescence. Mn-doped Sb-based PVK can be utilized as a new platform for optoelectronic applications.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Nasir Ali
- Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Gang Bi
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Yao Wang
- Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Qibin Shen
- Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Arash Rahimi-Iman
- Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Huizhen Wu
- Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Jao MH, Chan SH, Wu MC, Lai CS. Element Code from Pseudopotential as Efficient Descriptors for a Machine Learning Model to Explore Potential Lead-Free Halide Perovskites. J Phys Chem Lett 2020; 11:8914-8921. [PMID: 33021795 DOI: 10.1021/acs.jpclett.0c02393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of machine learning has proven its potential in material science. To acquire an accurate and promising result, the choice of descriptor plays an essential role in dictating the model performance. In this work, we introduce a set of novel descriptors, Element Code, which is generated from pseudopotential. Using a variational autoencoder to perform unsupervised learning, the produced Element Code is verified to contain representative information on elements. Attributed to the successful extraction of information from pseudopotential, Element Code can serve as the primary descriptor for the machine learning model. We construct a model using Element Code as the sole descriptor to predict the bandgap of a lead-free double halide perovskite, and an accuracy of 0.951 and mean absolute error of 0.266 eV are achieved. We believe our work can offer insights into selecting lead-free halide perovskites and establish a paradigm of exploring new materials.
Collapse
Affiliation(s)
- Meng-Huan Jao
- Green Technology Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Artificial Intelligent Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shun-Hsiang Chan
- Green Technology Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ming-Chung Wu
- Green Technology Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Artificial Intelligent Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan
| | - Chao-Sung Lai
- Green Technology Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Artificial Intelligent Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
44
|
Kubicki D, Saski M, MacPherson S, Gal̷kowski K, Lewiński J, Prochowicz D, Titman JJ, Stranks SD. Halide Mixing and Phase Segregation in Cs 2AgBiX 6 (X = Cl, Br, and I) Double Perovskites from Cesium-133 Solid-State NMR and Optical Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:8129-8138. [PMID: 33071455 PMCID: PMC7558408 DOI: 10.1021/acs.chemmater.0c01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/16/2020] [Indexed: 05/02/2023]
Abstract
All-inorganic double perovskites (elpasolites) are a promising potential alternatives to lead halide perovskites in optoelectronic applications. Although halide mixing is a well-established strategy for band gap tuning, little is known about halide mixing and phase segregation phenomena in double perovskites. Here, we synthesize a wide range of single- and mixed-halide Cs2AgBiX6 (X = Cl, Br, and I) double perovskites using mechanosynthesis and probe their atomic-level microstructure using 133Cs solid-state MAS NMR. We show that mixed Cl/Br materials form pure phases for any Cl/Br ratio while Cl/I and Br/I mixing is only possible within a narrow range of halide ratios (<3 mol % I) and leads to a complex mixture of products for higher ratios. We characterize the optical properties of the resulting materials and show that halide mixing does not lead to an appreciable tunability of the PL emission. We find that iodide incorporation is particularly pernicious in that it quenches the PL emission intensity and radiative charge carrier lifetimes for iodide ratios as low as 0.3 mol %. Our study shows that solid-state NMR, in conjunction with optical spectroscopies, provides a comprehensive understanding of the structure-activity relationships, halide mixing, and phase segregation phenomena in Cs2AgBiX6 (X = Cl, Br, and I) double perovskites.
Collapse
Affiliation(s)
- Dominik
J. Kubicki
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, U.K.
| | - Marcin Saski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01−224, Poland
| | - Stuart MacPherson
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, U.K.
| | - Krzysztof Gal̷kowski
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, U.K.
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń 87−100, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01−224, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Daniel Prochowicz
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01−224, Poland
| | - Jeremy J. Titman
- School
of
Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Samuel D. Stranks
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, U.K.
| |
Collapse
|
45
|
Umedov ST, Grigorieva AV, Lepnev LS, Knotko AV, Nakabayashi K, Ohkoshi SI, Shevelkov AV. Indium Doping of Lead-Free Perovskite Cs 2SnI 6. Front Chem 2020; 8:564. [PMID: 32850618 PMCID: PMC7417766 DOI: 10.3389/fchem.2020.00564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Structure and properties of an inorganic perovskite Cs2SnI6 demonstrated its potential as a light-harvester or electron-hole transport material; however, its optoelectronic properties are poorer than those of lead-based perovskites. Here, we report the way of light tuning of absorption and transport properties of cesium iodostannate(IV) Cs2SnI6 via partial heterovalent substitution of tin for indium. Light absorption and optical bandgaps of materials have been investigated by UV-vis absorption and photoluminescent spectroscopies. Low-temperature electron paramagnetic resonance spectroscopy was used to study the kind of paramagnetic centers in materials.
Collapse
Affiliation(s)
- Shodruz T Umedov
- Department of Materials Science, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia V Grigorieva
- Department of Materials Science, Lomonosov Moscow State University, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid S Lepnev
- Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Knotko
- Department of Materials Science, Lomonosov Moscow State University, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Koji Nakabayashi
- Department of Chemistry, School of Sciences, University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Sciences, University of Tokyo, Tokyo, Japan
| | - Andrei V Shevelkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
46
|
Wu T, Chen X, Wang J. Metal-Free Hybrid Organic-Inorganic Perovskites for Photovoltaics. J Phys Chem Lett 2020; 11:5938-5947. [PMID: 32610907 DOI: 10.1021/acs.jpclett.0c01645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There has been intense interest in hybrid organic-inorganic perovskites (HOIPs) in the materials science community due to their unexpected and fascinating properties with respect to photovoltaic applications. The intrinsic toxicity of Pb-based HOIPs, however, seriously hinders its practical large-scale commercialization. Exploring novel stable and environmentally friendly high-performance HOIPs for sunlight harvesting therefore becomes a scientific research hotspot in the photovoltaic research community. In contrast to devoting a great amount of effort to searching promising metal-cation-based HOIPs for photovoltaics, a comprehensive investigation of a series of silicon-based HOIPs is carried out in this study to discover metal-free high-performance HOIPs for photovoltaics. Remarkably, a new family of unexplored metal-free HOIPs with promising electronic properties for solar cells, theoretically confirmed to possess excellent thermal and environmental stability, is eventually discovered and expected to be tested for further experimental synthesis and characterization. The present study marks a significant step toward discovering a series of novel metal-free HOIPs for photovoltaics and provides novel cognition for rational design regarding eco-friendly and environmentally friendly materials.
Collapse
Affiliation(s)
- Tianmin Wu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Xian Chen
- College of Artificial Intelligence, Yango University, Fuzhou 350015, China
| | - Jian Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
47
|
The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres. Z KRIST-CRYST MATER 2020. [DOI: 10.1515/zkri-2020-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Yellow prismatic crystals of rubidium bromido-antimonate(III) Rb7Sb3Br16 and of two different modifications of thallium bromido-bismuthate(III) Tl7Bi3Br16 were obtained by solvent-free synthesis and by precipitation from acidic aqueous solutions. X-ray diffraction analyses revealed the Tl7Bi3I16-type for α-Tl7Bi3Br16 (orthorhombic, Cmcm, a = 2324.31(8) pm, b = 1346.69(4) pm, c = 3460.0(1) pm; Pearson symbol oC312) and a new structure type for β-Tl7Bi3Br16 (monoclinic, C2/c, a = 2331.87(5) pm, b = 1343.33(3) pm, c = 3546.01(7) pm, β = 102.708(1)°; mC312). The antimonate Rb7Sb3Br16 adopts the Tl7Bi3I16-type, too (orthorhombic, Cmcm, a = 2347.16(3) pm, b = 1357.89(5) pm, c = 3539.47(9) pm; oC312). The crystal structures of α- and β-Tl7Bi3Br16 comprise alternating slabs of isolated [BiBr6]3– octahedra and [Bi2Br10]4– octahedra pairs. Both structure types are hierarchically organized and can be regarded as sphere close packing with the same stacking sequence, if octahedra and octahedra pairs are replaced by spheres of equal size. The structural relationship between the Tl7Bi3I16-type and the hydrate Na7Bi3Br16 · 18H2O, which comprises similar structural features, is discussed.
Collapse
|
48
|
Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S, Wu H. A Potential Checkmate to Lead: Bismuth in Organometal Halide Perovskites, Structure, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903143. [PMID: 32670745 PMCID: PMC7341095 DOI: 10.1002/advs.201903143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/30/2020] [Indexed: 06/11/2023]
Abstract
The remarkable optoelectronic properties and considerable performance of the organo lead-halide perovskites (PVKs) in various optoelectronic applications grasp tremendous scientific attention. However, the existence of the toxic lead in these compounds is threatening human health and remains a major concern in the way of their commercialization. To address this issue, numerous nontoxic alternatives have been reported. Among these alternatives, bismuth-based PVKs have emerged as a promising substitute because of similar optoelectronic properties and extended environmental stability. This work communicates briefly about the possible lead-alternatives and explores bismuth-based perovskites comprehensively, in terms of their structures, optoelectronic properties, and applications. A brief description of lead-toxification is provided and the possible Pb-alternatives from the periodic table are scrutinized. Then, the classification and crystal structures of various Bi-based perovskites are elaborated on. Detailed optoelectronic properties of Bi-based perovskites are also described and their optoelectronic applications are abridged. The overall photovoltaic applications along with device characteristics (i.e., V OC, J SC, fill factor, FF, and power conversion efficiency, PCE), fabrication method, device architecture, and operational stability are also summarized. Finally, a conclusion is drawn where a brief outlook highlights the challenges that hamper the future progress of Bi-based optoelectronic devices and suggestions for future directions are provided.
Collapse
Affiliation(s)
- Sanam Attique
- Institute for Composites Science and Innovation (InCSI)School of Material Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Nasir Ali
- Zhejiang Province Key Laboratory of Quantum Technology and Devices and Department of PhysicsState Key Laboratory for Silicon MaterialsZhejiang UniversityHangzhou310027P. R. China
| | - Shahid Ali
- Materials Research LaboratoryDepartment of PhysicsUniversity of PeshawarPeshawar25120Pakistan
| | - Rabia Khatoon
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Na Li
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Amir Khesro
- Department of PhysicsAbdul Wali Khan UniversityMardan23200Pakistan
| | - Sajid Rauf
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical MaterialsFaculty of Physics and Electronic ScienceHubei UniversityWuhanHubei430062P. R. China
| | - Shikuan Yang
- Institute for Composites Science and Innovation (InCSI)School of Material Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Huizhen Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Devices and Department of PhysicsState Key Laboratory for Silicon MaterialsZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
49
|
Zeng F, Guo Y, Hu W, Tan Y, Zhang X, Feng J, Tang X. Opportunity of the Lead-Free All-Inorganic Cs 3Cu 2I 5 Perovskite Film for Memristor and Neuromorphic Computing Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23094-23101. [PMID: 32336082 DOI: 10.1021/acsami.0c03106] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, several types of lead halide perovskites have been demonstrated as active layers in resistive switching memory or artificial synaptic devices for neuromorphic computing applications. However, the thermal instability and toxicity of lead halide perovskites severely restricted their further practical applications. Herein, the environmentally friendly and uniform Cs3Cu2I5 perovskite films are introduced to act as the active layer in the Ag/Cs3Cu2I5/ITO memristor. Generally, the Ag ions could react with iodide ions and form AgIx compounds easily, so the Ag/PMMA/Cs3Cu2I5/ITO memristor was designed by employing the ultrathin polymethylmethacrylate (PMMA) layer to avoid the direct contact between the top Ag electrode and Cs3Cu2I5 perovskite films. After optimization, the obtained memristor demonstrated bipolar resistive switching with low operating voltage (< ±1 V), large on/off ratio (102), stable endurance (100 cycles), and long retention (>104 s). Additionally, biological synaptic behaviors including long-term potentiation and long-term depression have been investigated. By using the MNIST handwritten recognition data set, the handwritten recognition rate based on experimental data could reach 94%. In conclusion, our work provides the opportunity of exploring the novel application for the development of next-generation neuromorphic computing based on lead-free halide perovskites.
Collapse
Affiliation(s)
- Fanju Zeng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Yuanyang Guo
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Hu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yongqian Tan
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Xiaomei Zhang
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Julin Feng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
50
|
Wang T, Yan F. Reducing Agents for Improving the Stability of Sn-based Perovskite Solar Cells. Chem Asian J 2020; 15:1524-1535. [PMID: 32212294 DOI: 10.1002/asia.202000160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Indexed: 11/07/2022]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) have aroused tremendous research interest for their high efficiency, low cost and solution processability. However, the involvement of toxic lead in state-of-art perovskites hinders their market prospects. As an alternative, Sn-based perovskites exhibit similar semiconductor characteristics and can potentially achieve comparable photovoltaic performance in comparison with their lead-based counterparts. The main challenge of developing Sn-based PCSs lies in the intrinsic poor stability of Sn2+ , which could be oxidized and converted to Sn4+ . Notably, introduction of SnX2 (X=Cl, Br, I) additive becomes indispensable in the fabrication process, which highlights the importance of incorporating a reducing agent to improve the device stability. Additionally, efforts are made to utilize other reducing agents with different functions for the further enhancement of device performance. Currently, Sn-based PSCs could attain a record efficiency over 10% with great stability. In this review, we present the recent progress on reducing agents for improving the stability of Sn-based PSCs, and we hope to shed light on the challenges and opportunities of this research field.
Collapse
Affiliation(s)
- Tianyue Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|