1
|
Chen G, Lin G. A comprehensive understanding on droplets. Adv Colloid Interface Sci 2025; 341:103490. [PMID: 40154008 DOI: 10.1016/j.cis.2025.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Droplets are ubiquitous and necessary in natural phenomena, daily life, and industrial processes, which play a crucial role in many fields. So, the manipulation of droplets has been extensively investigated for meeting widespread applications, consequently, a great deal of progresses have been achieved across multiple disciplines ranging from chemistry to physics, material, biological, and energy science. For example, microdroplets have been utilized as reactors, colorimetric or electrochemical sensors, drug-delivery carriers, and energy harvesters. Moreover, droplet manipulation is the basis in both fundamental researches and practical applications, especially the combination of smart materials and external fields for achieving multifunctional applications of droplets. In view of this background, this review initiates discussion of the manipulation strategies of droplets including Laplace pressure, wettability gradients, electric field, magnetic force, light and temperature. Thereafter, based on their manipulation strategies, this review mainly summarizes the applications of droplets in the fields of robot, green energy, sensors, biomedical treatments, microreactors and chemical reactions. Application related basic concepts, theories, principles and progresses also have been introduced. Finally, this review addresses the challenges of manipulation and applications of droplets and provides the potential directions for their future development. By presenting these results, we aim to provide a comprehensive overview of water droplets and establish a unified framework that guides the development of droplets in various fields.
Collapse
Affiliation(s)
- Gang Chen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Guanhua Lin
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
2
|
Zhang W, Wang X, Guo Z. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges. MATERIALS HORIZONS 2025; 12:3267-3285. [PMID: 39992357 DOI: 10.1039/d4mh01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
Collapse
Affiliation(s)
- Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
3
|
Wang Z, Jiang L, Heng L. Liquid Adhesion Regulation on Bioinspired Slippery Surfaces: From Theory to Application. ACS NANO 2025; 19:13549-13566. [PMID: 40178580 DOI: 10.1021/acsnano.5c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Regulation of liquid adhesion on functional surfaces has attracted increasing attention due to its significant implications for fundamental research in liquid manipulation and a wide array of applications. Inspired by the slippery peristomes of Nepenthes pitcher plants, the concept of slippery surfaces with regulatable liquid adhesion under external stimuli was proposed and demonstrated. This review concentrates on the advancements in liquid adhesion regulation on these bioinspired slippery surfaces. Initially, we provide a concise introduction to the basic theory and design criteria of stable slippery surfaces. Following this, we summarize the characterization methods and influence factors of liquid adhesion on these surfaces. We then categorize the smart regulation modes of liquid adhesion into four key aspects: modulating the lubricant's phase, thickness, structure, and the interactions between the lubricant and the repellent liquid. Additionally, we systematically emphasize multibehavioral liquid manipulation strategies, such as movement, merging, splitting, bouncing, and rotating, along with the emerging applications of slippery surfaces, including pipetting devices, fog collection, microreactors, biochips, and nanogenerators. Finally, we discuss the remaining challenges and future perspectives for regulating liquid adhesion and the potential applications of smart slippery surfaces.
Collapse
Affiliation(s)
- Zubin Wang
- School of Chemistry, Beihang University, Beijing 100191, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Jiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Liping Heng
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Hao L, Fan B. Slippery liquid-like surfaces as a promising solution for sustainable drag reduction. NANOSCALE 2025; 17:6448-6459. [PMID: 39964314 DOI: 10.1039/d4nr04507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Drag reduction is crucial for many industries, ranging from aerospace to microfluidics, to enhance the energy efficiency and reduce costs. This work is the first to study drag reduction enabled by novel slippery liquid-like surfaces fabricated from flexible polymers. We experimentally characterized the drag reduction performance of slippery liquid-like surfaces in the laminar flow regime. Our results indicate that liquid-like surfaces can reduce fluid drag regardless of surface wettability and have achieved nearly 20% drag reduction. Furthermore, the durability tests show that these surfaces can maintain slipperiness over a month when exposed to air or water and the drag reduction capability for at least one week under a fluid flow. These findings highlight the potential of slippery liquid-like surfaces as a promising solution for sustainable drag reduction.
Collapse
Affiliation(s)
- Lingxuan Hao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, USA.
| | - Bei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
5
|
Zhai H, Zhao S, Liu N, Tian Y, Liu Y, Cao W, Yen W, Feng L. Water-Enabled Electricity Generation by a Smooth Liquid-Like Semiconductor Coating Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410599. [PMID: 39737678 DOI: 10.1002/smll.202410599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Water energy-converting techniques that focus on interfacial charge separation and transfer have aroused significant attention. However, the water-repelling nature leads to a less dense liquid layer and a sharp gradient of liquid velocity, which limits its output performance. Here, a water sliding generator (WSG) based on a smooth liquid-like/semiconductor surface (SLSS) is developed that harnesses the full advantage of liquid sliding friction. The prepared SLSS not only retained the slippery surface's close contact with liquid droplets and the characteristic of sliding without residue but also exhibited an enhanced friction effect on the low-friction surface. The smooth liquid-like/semiconductor surface water sliding generator (SLSS-WSG) exerts outstanding liquid sliding friction energy harvesting with high output (≈16 V and ≈60 µA) demonstrated, capability in series connection, dual operation of power generation and self-cleaning effect, and high physical and chemical stability (continuous current scour and sun exposure). The prepared surface can be integrated with photovoltaic panels, enabling them to generate electricity from water-sliding energy during rainy days, compensating for the reduced output of photovoltaic panels during overcast and rainy weather. Furthermore, it allows for energy collection even during rainy nights. The prepared surface can be potentially applied in various fields, showing great potential for the development of water-based clean energy.
Collapse
Affiliation(s)
- Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Na Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ye Tian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yue Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenqing Cao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Yen
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Yang L, Zhang X, Zhai Y, Xi T. Preparation and Wettability Analysis of Metal Biofunctional Surfaces Based on the Microquadrangular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12721-12728. [PMID: 38843494 DOI: 10.1021/acs.langmuir.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Improving the hydrophobic properties of aluminum alloys is crucial for industry. In previous reports, researchers prepared superhydrophobic surfaces by fabricating micro-nanostructures on the metal surface with a nanosecond laser. However, no researchers have formed microquadrangular groove structures on the metal surface. In this article, inspired by the bamboo leaf, a microquadrangular structure is designed and processed using nanosecond laser technology to form a superhydrophobic functional surface. The effects of laser processing parameters, such as laser power, scanning speed, scanning time, defocus and fill spacing on the size, surface morphology features, and wettability of the microquadrangular structure, are investigated by a single-factor experimental method. The experimental results show the optimal size of the processed microquadrangular structure obtained from the experiment with an error of 1.28% from the design size, where the fill spacing has the greatest effect on the size and the scanning time, defocus, and fill spacing have great influence on the surface morphology. The contact angle of water drops on the surface can reach 154.7°, and the power has the greatest influence on the wettability. Laser parameters have distinct effects on the properties of the materials. Therefore, by regulation of the laser parameters, the formation of the microstructure can be availably controlled and the result of hydrophobicity can be achieved.
Collapse
Affiliation(s)
- Liang Yang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, People's Republic of China
| | - Xinyan Zhang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, People's Republic of China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, People's Republic of China
| | - Tianle Xi
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, People's Republic of China
| |
Collapse
|
8
|
Liu M, Hua J, Du X. Smart materials for light control of droplets. NANOSCALE 2024. [PMID: 38624048 DOI: 10.1039/d3nr05593k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Droplet manipulation plays a critical role in both fundamental research and practical applications, especially when combined with smart materials and external fields to achieve multifunctional droplet manipulation. Light control of droplets has emerged as a significant and widely used strategy, driven primarily by photochemistry, photomechanics, light-induced Marangoni effects, and light-induced electric effects. This approach allowing for droplet manipulation with high spatial and temporal resolution, all while maintaining a remote and non-contact mode of operation. This review aims to provide a comprehensive overview of the mechanisms underlying light control of droplets, the design of smart materials for this purpose, and the diverse range of applications enabled by this technique. These applications include merging, splitting, releasing, forwarding, backward movement, and rotation of droplets, as well as chemical reactions, droplet robots, and microfluidics. By presenting this information, we aim to establish a unified framework that guides the sustainable development of light control of droplets. Additionally, this review addresses the challenges associated with light control of droplets and suggests potential directions for future development.
Collapse
Affiliation(s)
- Meijin Liu
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jiachuan Hua
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
9
|
Cremaschini S, Cattelan A, Ferraro D, Filippi D, Marinello F, Meggiolaro A, Pierno M, Sada C, Zaltron A, Umari P, Mistura G. Trifurcated Splitting of Water Droplets on Engineered Lithium Niobate Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4271-4282. [PMID: 38194671 PMCID: PMC10811617 DOI: 10.1021/acsami.3c16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
Controlled splitting of liquid droplets is a key function in many microfluidic applications. In recent years, various methodologies have been used to accomplish this task. Here, we present an optofluidic technique based on an engineered surface formed by coating a z-cut iron-doped lithium niobate crystal with a lubricant-infused layer, which provides a very slippery surface. Illuminating the crystal with a light spot induces surface charges of opposite signs on the two crystal faces because of the photovoltaic effect. If the light spot is sufficiently intense, millimetric water droplets placed near the illuminated spot split into two charged fragments, one fragment being trapped by the bright spot and the other moving away from it. The latter fragment does not move randomly but rather follows one of three well-defined trajectories separated by 120°, which reflect the anisotropic crystalline structure of Fe:LiNbO3. Numerical simulations explain the behavior of water droplets in the framework of the forces induced by the interplay of pyroelectric, piezoelectric, and photovoltaic effects, which originate simultaneously inside the illuminated crystal. Such a synergetic effect can provide a valuable feature in applications that require splitting and coalescence of droplets, such as chemical microreactors and biological encapsulation and screening.
Collapse
Affiliation(s)
- Sebastian Cremaschini
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Alberto Cattelan
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Davide Ferraro
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Filippo Marinello
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Alessio Meggiolaro
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Cinzia Sada
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Annamaria Zaltron
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Paolo Umari
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Giampaolo Mistura
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
10
|
Sun X, Wang X, Guo P, Jiang L, Heng L. Photoelectric synergistic anisotropic slippery interface for directional droplets manipulation. NANOSCALE 2023; 15:14523-14530. [PMID: 37609853 DOI: 10.1039/d3nr02779a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Stimuli-responsive anisotropic slippery surfaces have displayed remarkable performance in directionally manipulating droplet transport behavior. However, most current reported anisotropic slippery materials have been limited to a single response mode, which often fails to satisfy the practical conditions of double or synergetic stimulation in complex environments. Here, an anisotropic photoelectric synergistic responsive paraffin-injected directional oxidized copper foam slippery interface (P/DOC3-S) with a low response threshold is reported. Owing to the fast photoelectric response of P/DOC3-S, the reversible control of the anisotropic sliding behavior of droplets is realized by remotely switching on and off the photoelectric field. Additionally, through optimizing the structure, the response voltage for P/DOC3-S can be reduced to 0.3 V under one sunlight. This work will provide insights into creating new types of smart slippery surfaces, which are potentially useful in microfluidics, directional liquid transportation, the semiconductor industry, and other related fields.
Collapse
Affiliation(s)
- Xu Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xuan Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Pu Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Liping Heng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
11
|
He Z, Mu L, Wang N, Su J, Wang Z, Luo M, Zhang C, Li G, Lan X. Design, fabrication, and applications of bioinspired slippery surfaces. Adv Colloid Interface Sci 2023; 318:102948. [PMID: 37331090 DOI: 10.1016/j.cis.2023.102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Bioinspired slippery surfaces (BSSs) have attracted considerable attention owing to their antifouling, drag reduction, and self-cleaning properties. Accordingly, various technical terms have been proposed for describing BSSs based on specific surface characteristics. However, the terminology can often be confusing, with similar-sounding terms having different meanings. Additionally, some terms fail to fully or accurately describe BSS characteristics, such as the surface wettability of lubricants (hydrophilic or hydrophobic), surface wettability anisotropy (anisotropic or isotropic), and substrate morphology (porous or smooth). Therefore, a timely and thorough review is required to clarify and distinguish the various terms used in BSS literature. This review initially categorizes BSSs into four types: slippery solid surfaces (SSSs), slippery liquid-infused surfaces (SLISs), slippery liquid-like surfaces (SLLSs), and slippery liquid-solid surfaces (SLSSs). Because SLISs have been the primary research focus in this field, we thoroughly review their design and fabrication principles, which can also be applied to the other three types of BSS. Furthermore, we discuss the existing BSS fabrication methods, smart BSS systems, antifouling applications, limitations of BSS, and future research directions. By providing comprehensive and accurate definitions of various BSS types, this review aims to assist researchers in conveying their results more clearly and gaining a better understanding of the literature.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Su
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zhuo Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Chunle Zhang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
12
|
Misra S, Tenjimbayashi M, Weng W, Mitra SK, Naito M. Bioinspired Scalable Lubricated Bicontinuous Porous Composites with Self-Recoverability and Exceptional Outdoor Durability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37481765 DOI: 10.1021/acsami.3c03128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Lubricant-impregnated surfaces (LIS) are promising as efficient liquid-repellent surfaces, which comprise a surface lubricant layer stabilized by base solid structures. However, the lubricant layer is susceptible to depletion upon exposure to degrading stimuli, leading to the loss of functionality. Lubricant depletion becomes even more pronounced in exposed outdoor conditions, restricting LIS to short-term lab-scale applications. Thus, the development of scalable and long-term stable LIS suitable for practical outdoor applications remains challenging. In this work, we designed "Lubricated Bicontinuous porous Composites" (LuBiCs) by infusing a silicone oil lubricant into a bicontinuous porous composite matrix of tetrapod-shaped zinc oxide microfillers and poly(dimethylsiloxane). LuBiCs are prepared in the meter scale by a facile drop-casting inspired wet process. The bicontinuous porous feature of the LuBiCs enables capillarity-driven spontaneous lubricant transport throughout the surface without any external driving force. Consequently, the LuBiCs can regain liquid-repellent function upon lubricant depletion via capillary replenishment from a small, connected lubricant reservoir, making them tolerant to lubricant-degrading stimuli (e.g., rain shower, surface wiping, and shearing). As a proof-of-concept, we show that the large-scale "LuBiC roof" retains slippery behavior even after more than 9 months of outdoor exposure.
Collapse
Affiliation(s)
- Sirshendu Misra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Wei Weng
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Sushanta K Mitra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Masanobu Naito
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
13
|
Liang H, Zhang Z, Liu Y, Ye M, Hu C, Huang Y. Self-healable and transparent PDMS- g-poly(fluorinated acrylate) coating with ultra-low ice adhesion strength for anti-icing applications. Chem Commun (Camb) 2023; 59:3293-3296. [PMID: 36843530 DOI: 10.1039/d2cc05834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The high ice adhesion strength (τ) and low adhesion of lubricant-free slippery polymers have restricted their applications. We synthesized polysiloxane-g-fluorinated acrylate polymer with a branched structure, anchored groups and dynamic cross-linked network, features imparting increased chain segment slipperiness and self-healability. The coating showed a low τ (6 kPa), strong adhesion and prolonged life.
Collapse
Affiliation(s)
- Hengfei Liang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Zihong Zhang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ying Liu
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Min Ye
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Chengyao Hu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yawen Huang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
14
|
Zhou H, Jiao P, Lin Y. Emerging Deep-Sea Smart Composites: Advent, Performance, and Future Trends. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6469. [PMID: 36143780 PMCID: PMC9502296 DOI: 10.3390/ma15186469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
To solve the global shortage of land and offshore resources, the development of deep-sea resources has become a popular topic in recent decades. Deep-sea composites are widely used materials in abyssal resources extraction, and corresponding marine exploration vehicles and monitoring devices for deep-sea engineering. This article firstly reviews the existing research results and limitations of marine composites and equipment or devices used for resource extraction. By combining the research progress of smart composites, deep-sea smart composite materials with the three characteristics of self-diagnosis, self-healing, and self-powered are proposed and relevant studies are summarized. Finally, the review summarizes research challenges for the materials, and looks forward to the development of new composites and their practical application in conjunction with the progress of composites disciplines and AI techniques.
Collapse
Affiliation(s)
- Haiyi Zhou
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Pengcheng Jiao
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
- Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China
| | - Yingtien Lin
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
- Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
15
|
Liu C, Huang J, Guo Z, Liu W. A magnetic responsive composite surface for high-performance droplet and bubble manipulation. Chem Commun (Camb) 2022; 58:11119-11122. [PMID: 36102919 DOI: 10.1039/d2cc04286j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a magnetic responsive composite surface (MRCS) was prepared by injecting a magnetic elastomer into ZnO nanoarrays for intelligent control of droplet/bubble transport. This non-pollution, non-contact operation method has shown great potential in micro-fluids, micro-chemical reactors, chip laboratory environments and other related applications.
Collapse
Affiliation(s)
- Cong Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
16
|
Yang X, Wang J, Gao Z, Zhang W, Zhu H, Song Y, Wang Q, Liu M, Jiang L, Huang Y, Xia F. An orthogonal dual-regulation strategy for sensitive biosensing applications. Natl Sci Rev 2022; 9:nwac048. [PMID: 36285294 PMCID: PMC9584063 DOI: 10.1093/nsr/nwac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 10/27/2023] Open
Abstract
Biosensing systems based on controllable motion behaviors of droplets have attracted extensive attention, but still face challenges of insufficient sensitivity and uncontrollable dynamic range due to imprecise manipulation of droplet motion on the surfaces. Here, we report an orthogonal dual-regulation strategy for precise motion control of droplets and we demonstrate its utility as a sensitive sensing system with controllable dynamic ranges of sensing for adenosine triphosphate, miRNA, thrombin and kanamycin, as well as discrimination of five kinds of DNA. We endowed a DNA-contained bio-droplet sliding on a lubricant-infused structural surface with micro-grooves to separately adjust the resistance from liquid phase and solid phase. The resistance from liquid phase mainly depended on hydrophobic interaction between DNA and lubricant, which can be finely tuned by different DNA's average chain length. Meanwhile, the resistance from solid surface was determined by the energy barrier from the periodic micro-grooves, which can be adjusted by varying the droplet's sliding direction on the surface. The hydrophobic interaction is conformed to be orthogonal to the micro-grooves' anisotropic resistance by three different methods. This orthogonal dual-regulation strategy thus demonstrated its ability to precisely control bio-droplets' motion behaviors and sensitive detection with adjustable dynamic ranges for various bio-targets. The dual-regulation strategy will provide significant insights for super-wettable biosensors, visual inspection and beyond.
Collapse
Affiliation(s)
- Xian Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- State Grid Integrated Energy Service Group CO. LTD., Beijing 100052, China
| | - Jinhua Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhongfeng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Weiqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yongjun Song
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
17
|
Cheng Z, He Y, Wang Z, Jiao X, Song Y, Meng J. Controllable droplet sliding on smart shape memory slippery surface. Chem Asian J 2022; 17:e202200481. [PMID: 35768903 DOI: 10.1002/asia.202200481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Indexed: 11/07/2022]
Abstract
Recently, slippery surfaces with controllable droplet sliding have aroused much attention in both fundamental research and realistic application. However, for almost all existing surfaces, constant stimuli such as thermal, light, magnetic fields, etc., are indispensable. Herein, by constructing pit structures on shape memory polymer and further infusing oil with low surface tension, we report a shape memory slippery surface that can overcome the above imperfection. Based on the shape memory performance, the surface can memorize diverse pit size as the surface is stretched or recovered. With the variation of pit structure, the sliding performances for both water and organic liquid droplets can be reversibly adjusted between the rolling and pinning states. This work, based on the shape memory effect, reports smart droplet sliding control through regulating surface microstructure, which not only provides a strategy for droplet sliding control, but also offers some fresh ideas for designing novel intelligent slippery surface.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Harbin Institute of Technology, Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Xidazhi street 92th, 150001, Harbin, CHINA
| | - Yaoxu He
- Harbin Institute of Technology, School of chemical engineering and chemistry, CHINA
| | - Zhe Wang
- Harbin Institute of Technology, School of chemical engineering and chemistry, CHINA
| | - Xiaoyu Jiao
- Shanghai Institute of Space Power-Sources, State Key Laboratory of Space Power-sources Technology, CHINA
| | - Yinbin Song
- Harbin Institute of Technology, School of chemical engineering and chemistry, CHINA
| | - Junhui Meng
- Beijing Institute of Technology, School of Aerospace Engineering, CHINA
| |
Collapse
|
18
|
Shome A, Das A, Borbora A, Dhar M, Manna U. Role of chemistry in bio-inspired liquid wettability. Chem Soc Rev 2022; 51:5452-5497. [PMID: 35726911 DOI: 10.1039/d2cs00255h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemistry and topography are the two distinct available tools for customizing different bio-inspired liquid wettability including superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superoleophilicity, and liquid infused slippery property. In nature, various living species possessing super and special liquid wettability inherently comprises of distinctly patterned surface topography decorated with low/high surface energy. Inspired from the topographically diverse natural species, the variation in surface topography has been the dominant approach for constructing bio-inspired antiwetting interfaces. However, recently, the modulation of chemistry has emerged as a facile route for the controlled tailoring of a wide range of bio-inspired liquid wettability. This review article aims to summarize the various reports published over the years that has elaborated the distinctive importance of both chemistry and topography in imparting and modulating various bio-inspired wettability. Moreover, this article outlines some obvious advantages of chemical modulation approach over topographical variation. For example, the strategic use of the chemical approach has allowed the facile, simultaneous, and independent tailoring of both liquid wettability and other relevant physical properties. We have also discussed the design of different antiwetting patterned and stimuli-responsive interfaces following the strategic and precise alteration of chemistry for various prospective applications.
Collapse
Affiliation(s)
- Arpita Shome
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.,Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India
| |
Collapse
|
19
|
Feng R, Song F, Zhang YD, Wang XL, Wang YZ. A confined-etching strategy for intrinsic anisotropic surface wetting patterning. Nat Commun 2022; 13:3078. [PMID: 35654809 PMCID: PMC9163165 DOI: 10.1038/s41467-022-30832-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Anisotropic functional patterned surfaces have shown significant applications in microfluidics, biomedicine and optoelectronics. However, surface patterning relies heavily on high-end apparatuses and expensive moulds/masks and photoresists. Decomposition behaviors of polymers have been widely studied in material science, but as-created chemical and physical structural changes have been rarely considered as an opportunity for wettability manipulation. Here, a facile mask-free confined-etching strategy is reported for intrinsic wettable surface patterning. With printing technology, the surface wetting state is regulated, enabling the chemical etching of setting locations and efficient fabrication of complex patterns. Notably, the created anisotropic patterns can be used for realizing water-responsive information storage and encryption as well as fabricating flexible electrodes. Featuring advantages of simple operation and economic friendliness, this patterning approach brings a bright prospect in developing functional materials with versatile applications. Anisotropic functional patterned surfaces have shown significant applications in microfluidics, biomedicine, and optoelectronics. Here, authors demonstrate a fast and mask-free etching method for accurate surface patterning by confined decomposition, enabling the efficient fabrication of complex patterns.
Collapse
Affiliation(s)
- Rui Feng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Ying-Dan Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
20
|
Yang C, Zeng Q, Huang J, Guo Z. Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review. Adv Colloid Interface Sci 2022; 306:102724. [DOI: 10.1016/j.cis.2022.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
21
|
Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.
Collapse
Affiliation(s)
- Adil Majeed Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Lewis Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Ufuoma Israel Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Rajdeep Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
22
|
Jiang H, Wang W, Li J, Zhu L, Zhang D, Wang P, Wang G. Fabrication of Novel Self-healable Ultraslippery Surface for Preventing Marine Microbiologically Influenced Corrosion. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Chen W, Zhang X, Zhao S, Huang J, Guo Z. Slippery magnetic track inducing droplet and bubble manipulation. Chem Commun (Camb) 2022; 58:1207-1210. [PMID: 34982074 DOI: 10.1039/d1cc06369c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is difficult for traditional droplet manipulation to combine transportation and rapid capture of droplets on an inclined surface. In this work, a slippery magnetic track (SMT) is presented to manipulate droplets and bubbles in a magnetic field. By changing the direction of the magnetic field, the transitions from non-pinning to pinning states on the SMT can be achieved. Through the SMT surface, it is possible to capture and release droplets and bubbles in the vertical direction. The detailed theoretical and experimental studies of droplet and bubble manipulation are discussed. This work demonstrates the versatility of magnetic manipulation, including the transition of droplet trajectory and bubble removal, which will facilitate the research of intelligent interfaces in energy transmission, drug transport and micro engineering.
Collapse
Affiliation(s)
- Wei Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China. .,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Xiaolin Zhang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China.
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China. .,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|
24
|
|
25
|
Sun L, Guo J, Chen H, Zhang D, Shang L, Zhang B, Zhao Y. Tailoring Materials with Specific Wettability in Biomedical Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100126. [PMID: 34369090 PMCID: PMC8498887 DOI: 10.1002/advs.202100126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/22/2021] [Indexed: 05/02/2023]
Abstract
As a fundamental feature of solid surfaces, wettability is playing an increasingly important role in our daily life. Benefitting from the inspiration of biological paradigms and the development in manufacturing technology, numerous wettability materials with elaborately designed surface topology and chemical compositions have been fabricated. Based on these advances, wettability materials have found broad technological implications in various fields ranging from academy, industry, agriculture to biomedical engineering. Among them, the practical applications of wettability materials in biomedical-related fields are receiving remarkable researches during the past decades because of the increasing attention to healthcare. In this review, the research progress of materials with specific wettability is discussed. After briefly introducing the underlying mechanisms, the fabrication strategies of artificial materials with specific wettability are described. The emphasis is put on the application progress of wettability biomaterials in biomedical engineering. The prospects for the future trend of wettability materials are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jiahui Guo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hanxu Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Dagan Zhang
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Luoran Shang
- Zhongshan‐Xuhui Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Bing Zhang
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Yuanjin Zhao
- Institute of Translational MedicineDepartment of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
26
|
Su Y, Fan X, Zhu S, Li Z, Bian Y, Li C, Zhang Y, Liu L, Hu Y, Li J, Wu D. Magnetism-Actuated Superhydrophobic Flexible Microclaw: From Spatial Microdroplet Maneuvering to Cross-Species Control. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35165-35172. [PMID: 34254510 DOI: 10.1021/acsami.1c09142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The flexible maneuvering of microliter liquid droplets is significant in both fundamental science and practical applications. However, most current strategies are limited to the rigid locomotion on confined geographies platforms, which greatly hinder their practical uses. Here, we propose a magnetism-actuated superhydrophobic flexible microclaw (MSFM) with hierarchical structures for water droplet manipulation. By virtue of precise femtosecond laser patterning on magnetism-responsive poly(dimethylsiloxane) (PDMS) films doped with carbonyl iron powder, this MSFM without chemical contamination exhibits powerful spatial droplet maneuvering advantages with fast response (<100 ms) and lossless water transport (∼50 cycles) in air. We further performed quantitative analysis of diverse experimental parameters including petal number, length, width, and iron element proportion in MSFM impacting the applicable maneuvering volumes. By coupling the advantages of spatial maneuverability and fast response into this versatile platform, typical unique applications are demonstrated such as programmable coalescence of droplets, collecting debris via droplets, tiny solid manipulation in aqueous severe environments, and harmless living creature control. We envision that this versatile MSFM should provide great potential for applications in microfluidics and cross-species robotics.
Collapse
Affiliation(s)
- Yahui Su
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Xinran Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhicheng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Yucheng Bian
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Lin Liu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Li C, Li M, Ni Z, Guan Q, Blackman BRK, Saiz E. Stimuli-responsive surfaces for switchable wettability and adhesion. J R Soc Interface 2021; 18:20210162. [PMID: 34129792 PMCID: PMC8205534 DOI: 10.1098/rsif.2021.0162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Diverse unique surfaces exist in nature, e.g. lotus leaf, rose petal and rice leaf. They show similar contact angles but different adhesion properties. According to the different wettability and adhesion characteristics, this review reclassifies different contact states of droplets on surfaces. Inspired by the biological surfaces, smart artificial surfaces have been developed which respond to external stimuli and consequently switch between different states. Responsive surfaces driven by various stimuli, e.g. stretching, magnetic, photo, electric, temperature, humidity and pH, are discussed. Studies reporting on either atmospheric or underwater environments are discussed. The application of tailoring surface wettability and adhesion includes microfluidics/droplet manipulation, liquid transport and harvesting, water energy harvesting and flexible smart devices. Particular attention is placed on the horizontal comparison of smart surfaces with the same stimuli. Finally, the current challenges and future prospects in this field are also identified.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, City and Guilds Building, Imperial College London, London SW7 2AZ, UK
| | - Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Zhongshi Ni
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bamber R. K. Blackman
- Department of Mechanical Engineering, City and Guilds Building, Imperial College London, London SW7 2AZ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
28
|
Yeganehdoust F, Amer A, Sharifi N, Karimfazli I, Dolatabadi A. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6278-6291. [PMID: 33978432 DOI: 10.1021/acs.langmuir.1c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The focus of this study is to investigate and compare the behavior of a droplet on superhydrophobic (SHS) and slippery lubricant impregnated (SLIPS) surfaces under the effect of air shear flow. In this regard, both experimental and numerical analyses have been conducted to compare their performance on droplet mobility under different air speeds. Two different lubricants have been utilized to scrutinize their effect on droplet movement. The numerical simulations have been performed based on the volume of fluid method coupled with the large eddy simulation turbulent model in conjunction with the dynamic contact angle method in addition to a model that can represent the effect of lubricants on slippery surfaces. The numerical simulations are compared with the experimental study in order to shed light on the underlying mechanisms. The results showed that under the same conditions, the critical velocity for droplet movement on the superhydrophobic surfaces is lower than that on the slippery lubricant impregnated surfaces due to the smaller droplet base diameter and the larger contact angle. The hydrodynamics of droplet mobility on superhydrophobic surfaces exhibits a rolling behavior while for the slippery lubricant impregnated surfaces a combination of rolling and sliding is observed. Beyond the critical airflow speed, a complete droplet shedding on all surfaces occurs. The wetting length and position of the droplet on superhydrophobic and slippery surfaces have been measured. On slippery surfaces, the speed of droplets is greatly affected by the lubricant properties while similar behavior in the wetting lengths is observed.
Collapse
Affiliation(s)
- Firoozeh Yeganehdoust
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Adham Amer
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Navid Sharifi
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Ida Karimfazli
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Ali Dolatabadi
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
29
|
Fang J, Zhang Y, Xiao L, Jiao Y, Tang X, Cheng H, Cui Z, Li X, Li G, Cao M, Zhong L. Self-Propelled and Electrobraking Synergetic Liquid Manipulator toward Microsampling and Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14741-14751. [PMID: 33723993 DOI: 10.1021/acsami.1c01494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet manipulation is of paramount significance for microfluidics-based biochips, especially for bioanalytical chips. Despite great progresses made on droplet manipulation, the existing bioanalytical methods face challenges in terms of capturing minute doses toward hard-to-obtain samples and analyzing biological samples at low temperatures immediately. To circumvent these limitations, a self-propelled and electric stimuli synergetic droplet manipulator (SES-SDM) was developed by a femtosecond laser microfabrication strategy followed by post-treatment. Combining the inspiration from cactus and Nepenthes pitcher plants, the wedge structure with the microbowl array and silicone oil infusion was endowed cooperatively with the SES-SDM. With the synergy of the ultralow voltage (4.0 V) stimuli, these bioinspired features enable the SES-SDM to transport the droplet spontaneously and controllably, showing the maximum fast motion (15.7 mm/s) and long distance (96.2 mm). Remarkably, the SES-SDM can function at -5 °C without the freezing of the droplets, where the self-propelled motion and electric-responsive pinning can realize the accurate capture and real-time analysis of the microdroplets of the tested samples. More importantly, the SES-SDM can realize real-time diagnosis of excessive heavy metal in water by the cooperation of self-propulsion and electro-brake. This work opens an avenue to design a microsampling (5-20 μL) manipulator toward producing the minute samples for efficient bioanalysis and offers a strategy for microanalysis using the synergistic droplet manipulation.
Collapse
Affiliation(s)
- Jiahao Fang
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yabin Zhang
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Lin Xiao
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yan Jiao
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xiaoxuan Tang
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Hui Cheng
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Zehang Cui
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xiaohong Li
- Joint Laboratory for Extreme Conditions Matter Properties, School of Science, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Guoqiang Li
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Moyuan Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Liang Zhong
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
30
|
Yang X, Zhuang K, Lu Y, Wang X. Creation of Topological Ultraslippery Surfaces for Droplet Motion Control. ACS NANO 2021; 15:2589-2599. [PMID: 33253526 DOI: 10.1021/acsnano.0c07417] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet motion control on slippery liquid-infused porous surfaces (SLIPS) that mimics the peristome surface of Nepenthes alata has promising applications in the fields of energy, lab-on-a-chip device, etc., yet is limited due to the difficulty in regulating its wettability. In this work, topologies with specific functions from natural creatures, for example, grooved structures of rice leaf and wedge-shaped structures of shore bird beak with droplet transporting capability were integrated with the SLIPS. Three-dimensional topological SLIPS was fabricated on metal substrates using laser milling followed by alkaline oxidation. Fabricated rice leaflike grooved nanotextured SLIPS can properly shape the droplet footprint to achieve a sliding resistance anisotropy of 109.8 μN, which is 27 times larger than that of a natural rice leaf and can therefore be used to efficiently and precisely transport droplets; wedge-shaped nanotextured SLIPS can confine the droplet footprint and squeeze droplet to produce a Laplace pressure gradient for continuous self-driven droplet transport. The created surfaces can manipulate droplets of acid, alkali, and salt solutions. The proposed concept is believed to have potential applications for condensing heat transfer and droplet-based lab-on-a-chip devices.
Collapse
Affiliation(s)
- Xiaolong Yang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kai Zhuang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yao Lu
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, U.K
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
31
|
Wu S, Liu L, Zhu S, Xiao Y. Smart Control for Water Droplets on Temperature and Force Dual-Responsive Slippery Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:578-584. [PMID: 33369422 DOI: 10.1021/acs.langmuir.0c03308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Responsive slippery lubricant-infused porous surfaces (SLIPSs), featuring excellent liquid repelling/sliding capabilities in response to external stimuli, have attracted great attention in smart droplet manipulations. However, most of the reported responsive SLIPSs function under a single stimulus. Here, we report a kind of smart slippery surface capable of on-demand control between sliding and pinning for water droplets via alternately freezing/thawing the stretchable polydimethylsiloxane sheet in different strains. Diverse parameters are quantified to investigate the critical sliding volume of the droplet, including lubricant infusion amount, laser-scanning power, and pillar spacing. By virtue of the cooperation of temperature and force fields acting on the SLIPS, we demonstrate the intriguing applications including controllable chemical reaction and on-demand electrical circuit control. We envision that this dual-responsive surface should provide more possibilities in smart control of microscale droplets, especially in active vaccine-involved biochemical microreactions where a lower temperature is highly favored.
Collapse
Affiliation(s)
- Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Lin Liu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xiao
- School of Mechanical Engineering, Nantong Vocational University, Nantong 226007, China
| |
Collapse
|
32
|
Yan M, Chen R, Zhang C, Liu Q, Sun G, Liu J, Yu J, Lin C, Wang J. Fully Repairable Slippery Organogel Surfaces with Reconfigurable Paraffin-Based Framework for Universal Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39807-39816. [PMID: 32805942 DOI: 10.1021/acsami.0c09915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing a slippery lubricant-infused surface (SLIS) whose internal microstructure and surface properties can be fully repaired helps to improve its property stability and extend technological implications but has presented a huge challenge. A class of fully repairable slippery organogel surfaces (SOSs), which uses microstructured paraffin as reconfigurable supporting structure and silicone oil as lubricant dispersion medium, is reported here. Attributed to nearly 90 wt % of silicone oil stored in the slippery organogel system and good compatibility with the paraffin-based framework, SOSs combine continuous lubricity and reliable lubricant storage stability. Furthermore, the thermally sensitive paraffin-based framework can quickly switch between solid supporting structure and liquid solution according to the ambient temperature, thereby achieving rapid regeneration of microstructure. This unique system consisting of reconfigurable framework and flowable lubricant derives two types of repairs aimed at varying degrees of damage. Significantly, the easy-to-prepare SOS, on the other hand, allows the adoption of various substrate surfaces for different purposes to form an antiadhesion coating and exhibits excellent antistain, antialgae, and anti-icing performance, thus greatly improving the flexibility of such materials in practical applications.
Collapse
Affiliation(s)
- Minglong Yan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- HIT (Hainan) Military-Civilian Integration Innovation Research Institute Co., Ltd, Hainan, 572427, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Gaohui Sun
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
33
|
Tang B, Meng C, Zhuang L, Groenewold J, Qian Y, Sun Z, Liu X, Gao J, Zhou G. Field-Induced Wettability Gradients for No-Loss Transport of Oil Droplets on Slippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38723-38729. [PMID: 32846489 DOI: 10.1021/acsami.0c06389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transporting oil droplets is crucial for a wide range of industrial and biomedical applications but remains highly challenging due to the large contact angle hysteresis on most solid surfaces. A liquid-infused slippery surface has a low hysteresis contact angle and is a highly promising platform if sufficient wettability gradient can be created. Current strategies used to create wettability gradient typically rely on the engineering of the chemical composition or geometrical structure. However, these strategies are inefficient on a slippery surface because the infused liquid tends to conceal the gradient in the chemical composition and small-scale geometrical structure. Magnifying the structure, on the other hand, will significantly distort the surface topography, which is unwanted in practice. In this study, we address this challenge by introducing a field-induced wettability gradient on a flat slippery surface. By printing radial electrodes array, we can pattern the electric field, which induces gradient contact angles. Theoretical analysis and experimental results reveal that the droplet transport behavior can be captured by a nondimensional electric Bond number. Our surface enables no-loss transport of various types of droplets, which we expect to find important applications such as heat transfer, anticontamination, microfluidics, and biochemical analysis.
Collapse
Affiliation(s)
- Biao Tang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Chuanzhi Meng
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Lei Zhuang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jan Groenewold
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Research Institute, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Yuyang Qian
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhongqian Sun
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xueli Liu
- Faculty of Science and Technology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Jun Gao
- Faculty of Science and Technology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Academy of Shenzhen Guohua, Optoelectronics, Shenzhen 518110, P. R. China
| |
Collapse
|
34
|
Buten C, Kortekaas L, Ravoo BJ. Design of Active Interfaces Using Responsive Molecular Components. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904957. [PMID: 31573115 DOI: 10.1002/adma.201904957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Responsive interfaces are interfaces that show a defined and reversible change in physical properties in response to external stimuli. Typically, responsive interfaces result from the immobilization of responsive molecular components at the interface that translate a nanoscale signal into a macroscopic effect. Responsive interfaces can also be obtained if the topology of the interface can be reversibly changed using an external stimulus. As the surface of any material is its connection to the environment, responsive interfaces provide opportunities for interactive materials which are not only able to change properties upon demand, but also sense their environment and act autonomously. The application of responsive molecular components at interfaces, however, requires chemical and physical compatibility with the material surface of interest, posing a challenge not least in the retention of the responsive functionality. The state of the art in "active" interfaces which display responsive wettability, permeability, or adhesion is discussed, with a particular emphasis on microscale and nanoscale patterning since patterned interfaces can give rise to unique material properties. Finally, perspectives in the development of responsive interfaces, as well as promising approaches for bypassing the most prominent challenges are discussed.
Collapse
Affiliation(s)
- Christoph Buten
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Luuk Kortekaas
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
35
|
Li H, Feng X, Peng Y, Zeng R. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability. NANOSCALE 2020; 12:7700-7711. [PMID: 32211633 DOI: 10.1039/c9nr10699e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by lotus leaves, superhydrophobic surfaces (SHS) have been fabricated by many methods due to their various properties such as self-cleaning, anti-corrosion, and anti-biofouling properties. In recent years, inspired by Nepenthes pitcher plants, the 'slippery liquid-infused porous surface' (SLIPS) has attracted numerous researchers' attention because it not only shows ability corresponding to SHS but also exhibits durability in some aspects due to the continuous and homogeneous liquid-infused surfaces. In this paper, we firstly used a facile hydrothermal method and modification to fabricate SHS on a Mg alloy substrate. After the infusion of a lubricant by a spin-coating method, the transformation from the SHS to SLIPS can be achieved. The SLIPS exhibits an excellent self-cleaning property compared to the SHS, except that the water droplet rolls on the SHS and slides on the SLIPS. Moreover, the SLIPS demonstrates better anti-corrosion and anti-biofouling properties, and is obviously superior to SHS for use on the Mg alloy substrate. The enhanced anti-corrosion and anti-biofouling properties of the SLIPS are because the continuously infused lubricant replaces the air trapped in the micro-pores. Importantly, compared with SHS, the SLIPS shows excellent thermally assisted healing properties. The results of this work indicate that the SLIPS is expected to be an efficient method for improving the water-repellent, self-cleaning, anti-biofouling and anti-corrosion properties of magnesium alloys.
Collapse
Affiliation(s)
- Hao Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | | | | | | |
Collapse
|
36
|
Zuo Y, Zheng L, Zhao C, Liu H. Micro-/Nanostructured Interface for Liquid Manipulation and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903849. [PMID: 31482672 DOI: 10.1002/smll.201903849] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/12/2019] [Indexed: 05/09/2023]
Abstract
Understanding the relationship between liquid manipulation and micro-/nanostructured interfaces has gained much attention due to the wide potential applications in many fields, such as chemical and biomedical assays, environmental protection, industry, and even daily life. Much work has been done to construct various materials with interfacial liquid manipulation abilities, leading to a range of interesting applications. Herein, different fabrication methods from the top-down approach to the bottom-up approach and subsequent surface modifications of micro-/nanostructured interfaces are first introduced. Then, interactions between the surface and liquid, including liquid wetting, liquid transportation, and a number of corresponding models, together with the definition of hydrophilic/hydrophobic, oleophilic/olephobic, the definition and mechanism of superwetting, including superhydrophobicity, superhydrophilicity, and superoleophobicity, are presented. The micro-/nanostructured interface, with major applications in self-cleaning, antifogging, anti-icing, anticorrosion, drag-reduction, oil-water separation, water collection, droplet (micro)array, and surface-directed liquid transport, is summarized, and the mechanisms underlying each application are discussed. Finally, the remaining challenges and future perspectives in this area are included.
Collapse
Affiliation(s)
- Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuzheng Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
37
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
38
|
Yang X, Huang Y, Zhao Y, Zhang X, Wang J, Sann EE, Mon KH, Lou X, Xia F. Bioinspired Slippery Lubricant-Infused Surfaces With External Stimuli Responsive Wettability: A Mini Review. Front Chem 2019; 7:826. [PMID: 31850315 PMCID: PMC6895960 DOI: 10.3389/fchem.2019.00826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
Responsive slippery lubricant-infused surfaces (SLIS) have attracted substantial attention because of the high demand of fundamental research and practical applications, such as controllable liquid-repellency, intelligent, and easy-to-implement wettability switching. In this review, advanced development of responsive slippery surfaces is briefly summarized upon various external stimuli, including stress, electrical field, magnetic field, and temperature. In addition, remaining challenge and prospect are also discussed.
Collapse
Affiliation(s)
- Xian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China.,Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, China
| | - Yan Zhao
- Department of Materials Science, Institute of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Xiaoyu Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jinhua Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Ei Ei Sann
- Department of Industrial Chemistry, Dagon University, Yangon, Myanmar
| | - Khin Hla Mon
- Department of Industrial Chemistry, Dagon University, Yangon, Myanmar
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| |
Collapse
|
39
|
Ben S, Zhou T, Ma H, Yao J, Ning Y, Tian D, Liu K, Jiang L. Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900834. [PMID: 31508285 PMCID: PMC6724473 DOI: 10.1002/advs.201900834] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Indexed: 05/19/2023]
Abstract
In nature, fluid manipulations are ubiquitous in organisms, and they are crucial for many of their vital activities. Therefore, this process has also attracted widescale research attention. However, despite significant advances in fluid transportation research over the past few decades, it is still hugely challenging to achieve efficient and nondestructive droplet transportation owing to contamination effects and controllability problems in liquid transportation applications. To this end, inspired by the motile microcilia of micro-organisms, the superhydrophobicity of lotus leaves, the underwater superoleophobicity of filefish skin, and pigeons' migration behavior, a novel manipulation strategy is developed for droplets motion. Specifically, herein, a superwettable magnetic microcilia array surface with a structure that is switchable by an external magnetic field is constructed for droplet manipulation. It is found that under external magnetic fields, the superhydrophobic magnetic microcilia array surface can continuously and directionally manipulate the water droplets in air and that the underwater superoleophobic magnetic microcilia array surface can control the oil droplets underwater. This work demonstrates that the nondestructive droplet transportation mechanism can be used for liquid transportation, droplet reactions, and micropipeline transmission, thus opening up an avenue for practical applications of droplet manipulation using intelligent microstructure surfaces.
Collapse
Affiliation(s)
- Shuang Ben
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Tiantian Zhou
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Han Ma
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinjia Yao
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Yuzhen Ning
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Kesong Liu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, School of ChemistryBeihang UniversityBeijing100191P. R. China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
40
|
Villegas M, Zhang Y, Abu Jarad N, Soleymani L, Didar TF. Liquid-Infused Surfaces: A Review of Theory, Design, and Applications. ACS NANO 2019; 13:8517-8536. [PMID: 31373794 DOI: 10.1021/acsnano.9b04129] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Due to inspiration from the Nepenthes pitcher plant, a frontier of devices has emerged with unmatched capabilities. Liquid-infused surfaces (LISs), particularly known for their liquid-repelling behavior under low tilting angles (<5°), have demonstrated a plethora of applications in medical, marine, energy, industrial, and environmental materials. This review presents recent developments of LIS technology and its prospective to define the future direction of this technology in solving tomorrow's real-life challenges. First, an introduction to the different models explaining the physical phenomena of these surfaces, their wettability, and viscous-dependent frictional forces is discussed. Then, an outline of different emerging strategies required to fabricate a stable liquid-infused interface is presented, including different substrates, lubricants, surface chemistries, and design parameters which can be tuned depending on the application. Furthermore, applications of LIS coatings in the areas of anticorrosion, antifouling, anti-icing, self-healing, droplet manipulation, and biomedical devices will be presented followed by the limitations and future direction of this technology.
Collapse
|
41
|
Lv X, Jiao Y, Wu S, Li C, Zhang Y, Li J, Hu Y, Wu D. Anisotropic Sliding of Underwater Bubbles On Microgrooved Slippery Surfaces by One-Step Femtosecond Laser Scanning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20574-20580. [PMID: 31090393 DOI: 10.1021/acsami.9b06849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Slippery liquid-infused surfaces (SLIPS) with excellent liquid sliding abilities have attracted great attention due to their multifunctions in broad fields. However, current research is mainly concentrated on the isotropic SLIPS, and there are few studies about the fabrication of anisotropic SLIPS and the investigation of anisotropic bubble sliding. Herein, we reported a kind of distinct periodic microgrooved slippery surface (MGSS) by one-step femtosecond laser scanning and realized bubble anisotropic sliding in a liquid system. The MGSS enables the bubble to slide along the direction of grooves but prevents the bubble from sliding along the perpendicular direction to the groove. The mechanism is mainly related to the energy barrier difference caused by the spin-coating oil film thickness and the groove height along the parallel and perpendicular directions. The relationship between the driven force of buoyancy and the resistance of contact angle hysteresis was investigated by theoretical analysis, and the theoretical prediction showed a great adherence with the experimental results. We also studied the influence of laser power and groove period on the degree of anisotropy, and it was found that the groove space has little effect on the degree of anisotropy and the strongest bubble anisotropy can reach nearly 80°. Finally, the MGSS was successfully used in anisotropic bubble transportation on flat and curved surfaces. We believe that such functional surfaces will be promising candidates for manipulating bubble directional sliding behavior and further underwater gas collection.
Collapse
Affiliation(s)
- Xiaodong Lv
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Sizhu Wu
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Chuanzong Li
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
42
|
Yan S, Li W, Bi H, Wang M, Sun D, Wei Q, Wang S, Wang Z, Zhang M. Wettability control of conjugated polymer films by electric-field polarization technique. Chem Commun (Camb) 2019; 55:3274-3277. [DOI: 10.1039/c8cc09363f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wettability of conjugated polymer poly(3-hexylthiophene) (P3HT) films was accurately controlled by an electric field polarization technique, and transition of the films from being hydrophobic to hydrophilic was successfully achieved.
Collapse
Affiliation(s)
- Su Yan
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Wei Li
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
| | - Huan Bi
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Mian Wang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - De Sun
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
| | - Qi Wei
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Shiwei Wang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Zhe Wang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Mingyao Zhang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
| |
Collapse
|