1
|
Lu M, Ge B, Xu F, Zhou M, Xing F, Huang C. Encapsulating bimetallic nanoparticles on Mn 0.3Cd 0.7S solid solution for boosted photocatalytic selective imines synthesis. J Colloid Interface Sci 2025; 692:137508. [PMID: 40203571 DOI: 10.1016/j.jcis.2025.137508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
The synergetic combination of hydrogen (H2) generation with benzylamine (BA) dehydrogenation shows promise in terms of avoiding sacrificial agents and emitting pollutants without using up unlimited solar energy. However, the rational design of the electron transfer bridge and active sites of photocatalysts remains constrained, reducing the effectiveness of the target selective photocatalytic BA dehydrogenation coupling (PBDC) system. Herein, a bimetallic CuCo nanoparticles used as an efficient cocatalyst is coated on the Mn0.3Cd0.7S (MCS) nanorods (CuCo/MCS) that endows an optimal electronic structure, a directional electron transport tunnel, and suitable reactive sites for the PBDC reaction. Theoretical and experimental studies reveal that the synergistic effect of Cu and Co nanoparticles lowers the overall energy barrier of BA, facilitating the N-benzylidenebenzylamine (NBBA) and H2 generation. The incorporation of CuCo nanoparticles as cocatalysts into MCS not only reduces the overpotential of proton reduction but also weakens the adsorption of imine, thus producing H2 at a rate of 14.10 mmol g-1 h-1, with a BA conversion of 94.43 % and selectivity of 99 %. This work will offer a profound understanding of bimetal-anchored photocatalysts in electron transfer for synergetic renewable fuels and valuable chemical production.
Collapse
Affiliation(s)
- Mei Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Baoxin Ge
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Fangjie Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Fangsu Xing
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Caijin Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
2
|
Mallick A, Mayorga-Martinez CC, Pumera M. Low-dimensional materials for ammonia synthesis. Chem Soc Rev 2025; 54:5021-5080. [PMID: 40260534 DOI: 10.1039/d4cs00025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Ammonia is an essential chemical due to its immense usage in agriculture, energy storage, and transportation. The synthesis of "green" ammonia via carbon-free routes and renewable energy sources is the need of the hour. In this context, photo- and/or electrocatalysis proves to be highly crucial. Low-dimensional materials (LDMs), owing to their unique properties, play a significant role in catalysis. This review presents a vast library of LDMs and broadly categorizes their catalytic performance according to their dimensionality, i.e., zero-, one-, and two-dimensional catalysts. The rational design of LDMs can significantly improve their catalytic performance, particularly in reducing small molecules like dinitrogen, nitrates, nitrites, and nitric oxides to synthesize ammonia via photo- and/or electrocatalysis. Additionally, converting nitrates and nitrites to ammonia can be beneficial in wastewater treatment and be coupled with CO2 co-reduction or oxidative reactions to produce urea and other valuable chemicals, which are also discussed in this review. This review collates the works published in recent years in this field and offers some fresh perspectives on ammonia synthesis. Through this review, we aim to provide a comprehensive insight into the catalytic properties of the LDMs, which are expected to enhance the efficiency of ammonia production and promote the synthesis of value-added products.
Collapse
Affiliation(s)
- Apabrita Mallick
- Advanced Nanorobots and Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic.
| | - Carmen C Mayorga-Martinez
- School of Biomedical Engineering, Peruvian University of Applied Sciences (UPC), Prolongación Primavera 2390, 15023, Lima, Peru
| | - Martin Pumera
- Advanced Nanorobots and Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic.
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
3
|
Zhang S, Zheng N, Zhao S, Wang J. Allicin enhances urea-N conversion to microbial-N by inhibiting urease activity and modulating the rumen microbiome in cattle. MICROBIOME 2025; 13:124. [PMID: 40380272 PMCID: PMC12083136 DOI: 10.1186/s40168-025-02111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/11/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Urea serves as a vital nonprotein nitrogen source in ruminant nutrition, but its efficient utilization is often hampered due to rapid urease activity in the rumen. This study explores the potential of allicin, a garlic-derived compound, as a urease inhibitor to improve urea nitrogen utilization. Enzyme inhibition kinetics and molecular docking were used to identify allicin's interaction sites on urease. Additionally, metagenomic and 15N-urea metabolic flux analyses were conducted to evaluate allicin's impact on microbial populations and urea-N metabolism. RESULTS Allicin was identified as an inhibitor of ruminal urease, with an IC50 of 126.77 ± 1.21 μM. Molecular docking studies have shown that allicin forms hydrogen bonds with key urease residues, leading to the preemption of the urease active site and thus impeding urea binding. In a simulated rumen environment, allicin significantly reduced urea hydrolysis and ammonia production. Furthermore, allicin modified the rumen microbial community by inhibiting Prevotella species while promoting the growth of Ruminobacter species and Denitrobacterium detoxificans. A 15N-urea metabolic flux analysis revealed that allicin facilitated the incorporation of urea-derived nitrogen into microbial amino acids and nucleotides. CONCLUSION Allicin effectively inhibits urease activity in the rumen, enhancing the conversion of urea-N into microbial biomass. These findings suggest that allicin has significant potential to optimize urea metabolism in the rumen, offering a novel strategy for improving ruminant nitrogen nutrition. Video Abstract.
Collapse
Affiliation(s)
- Shiqi Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Zhao Q, Liu Y, Zhang Y, Zhu S, Xu H, Farhadpour M, Xiao F, Xing M, Cao D, Qin X, Vegge T, Shao M. Activity-Selectivity Trends in Electrochemical Urea Synthesis: Co-Reduction of CO 2 and Nitrates Over Single-Site Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501882. [PMID: 40344515 DOI: 10.1002/advs.202501882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/04/2025] [Indexed: 05/11/2025]
Abstract
Electrochemical co-reduction of carbon dioxide and nitrates (CO2NO3RR) holds promise for sustainable urea production. However, the sluggish kinetics of the sixteen-electron transfer and unclear mechanistic understanding strongly impede its development. Here, combined experimental and computational approaches are employed to screen a series of metal phthalocyanine as model catalysts (MPcs, M = Zn, Co, Ni, Cu, and Fe) to uncover the activity-selectivity trends in electrochemical CO2NO3RR. The theoretical simulations reveal that the thermodynamics of urea synthesis is significantly influenced by key intermediates, where the enhanced adsorption of *HOOCNO, coupled with reduced adsorptions of *N and *COOH, and moderate adsorption of *H2O, can significantly promote the urea production. ΔG*HOOCNO-ΔG*N-ΔG*COOH+ΔG*H2O as a potential descriptor is proposed for predicting the efficiency of CO2NO3RR toward urea formation. The findings provide systematic guidance for the future design of high-efficiency catalysts for urea electrosynthesis, addressing a crucial need for sustainable nitrogen fixation.
Collapse
Affiliation(s)
- Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yushen Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yuan Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Shangqian Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu, 211189, P. R. China
| | - Hongming Xu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Mohammad Farhadpour
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Minghui Xing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueping Qin
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, 2800 Kgs., Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, 2800 Kgs., Denmark
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Energy Institute, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, and CIAC-HKUST Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
- CIAC-HKUST Joint Laboratory for Hydrogen Energy, Energy Institute, The Hong Kong University of Science and Technology, Clear Watery Bay, Kowloon, Hong Kong, 999077, P. R. China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, Guangdong, 511458, P. R. China
| |
Collapse
|
5
|
Miao J, Chen C, Cao L, Al Nuaimi R, Li Z, Huang KW, Lai Z. Harnessing Lithium-Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles. Angew Chem Int Ed Engl 2025:e202503465. [PMID: 40289915 DOI: 10.1002/anie.202503465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron-coupled proton buffers (ECPBs) to seamlessly link WE with Li-NRR in a three-compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Collapse
Affiliation(s)
- Jun Miao
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cailing Chen
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Li Cao
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhen Li
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kuo-Wei Huang
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Xu W, Wang J, Zhang T, Hong J, Song Q, Han Z, Cullen P. Regulating Multifunctional Oxygen Vacancies for Plasma-Driven Air-to-Ammonia Conversion. Angew Chem Int Ed Engl 2025:e202508240. [PMID: 40263118 DOI: 10.1002/anie.202508240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Current ammonia (NH₃) synthesis is hindered by challenges including N₂ activation, NH₃ separation and process complexity. Here, we report a plasma-electrochemical process for the production of gaseous ammonia from air generated NOx, decoupled from processes employing liquid phase intermediaries such as NO₃⁻ and final product (NH4 +). Importantly, this process uses air for scalable ammonia production under ambient conditions and directly produces gaseous NH₃ which facilitates efficient product separation. For NOx reduction to NH₃, we propose a universal strategy combining plasma pretreatment and wet chemical calcination to introduce multifunctional oxygen vacancies. The resulting highly defective Fe₂O₃ nanoparticles on Cu achieves a significant ammonia production rate of 628 nmol·s⁻¹·cm⁻2, along with nearly 100% faradaic efficiency.
Collapse
Affiliation(s)
- Wanping Xu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jiaqian Wang
- School of Material Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tianqi Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jungmi Hong
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Qiang Song
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zhongkang Han
- School of Material Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Patrick Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
7
|
Tang S, Mao C, Zhao G, Ye J, Qu W, Wu L, Ozin G. Fact or fiction: What is in your 15N 2 and 15NH 3 cylinders for sustainable ammonia and urea research? iScience 2025; 28:112072. [PMID: 40151643 PMCID: PMC11937674 DOI: 10.1016/j.isci.2025.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/03/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Attaining reliable performance indicators via 15N-labeling is a daunting research endeavor for sustainable ammonia and urea synthesis processes, as currently obtained reaction rates and yields are often low. However, artifact and misinterpretation can be induced by ppm-level impurities in commercial 15N2 and 15NH3 cylinders, which are not well understood. Here, we report quantitative in-line gas chromatography-mass spectrometry (GC-MS) analysis of impurities in commercial 15N2 and 15NH3 cylinders at ppm level, in conjunction with 1H-NMR methods, exemplified by 808-16,252 ppm of 14N15N, 0-4,891 ppm 15NH3, 3-319 ppm 14NH3, 0-231 ppm of 14NO2, 0-176 ppm 15NO2, and 0-566 ppm 15N16O impurities, some of which were not reported in cylinder certification nor previous studies. The collected results have formed recommended protocols applicable to all future 15N labeling experiments intended to eliminate false positives.
Collapse
Affiliation(s)
- Sanli Tang
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengliang Mao
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanshu Zhao
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Jessica Ye
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Wenqiang Qu
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Lei Wu
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Geoffrey Ozin
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
8
|
Zhao D, Mao Z, Zhang S, Liu M, Hu K, Li D, Qu Z, Zhou L, Shi T. Ni-Co bimetallic phosphide catalyst toward electrocatalytic ammonia synthesis under ambient conditions. RSC Adv 2025; 15:10390-10394. [PMID: 40182500 PMCID: PMC11966603 DOI: 10.1039/d5ra00391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Electrocatalytic nitrate reduction reaction (NitRR) under ambient conditions is a promising sustainable and eco-friendly method for ammonia (NH3) synthesis, which currently highly relies on the energy-consuming Haber-Bosch process with enormous CO2 emissions. In this work, we report the synthesis of a Ni-Co bimetallic phosphide catalyst (NiCoP) using the traditional hydrothermal combined high-temperature phosphorization method. Compared with monometallic phosphides such as Ni2P and CoP, the as-synthesized NiCoP catalyst with synergistic effects exhibits remarkable NitRR performance with the highest faradaic efficiency (FE) of 91.3 ± 4.4% at -1.2 V (vs. RHE) with the maximum NH3 yield rate of 5553.4 ± 400.8 μg h-1 cm-2 at -1.4 V (vs. RHE). Further in situ different electrochemical mass spectrometry (DEMS) analysis is employed to identify the intermediate produced during the electrocatalytic NitRR process, confirming NiCoP as a promising electrocatalyst for NH3 synthesis.
Collapse
Affiliation(s)
- Dongnan Zhao
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Zhixian Mao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
| | - Min Liu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Kui Hu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Daopeng Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
| | - Zhengguo Qu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Li Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
| | - Tongfei Shi
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
9
|
Ballard-Kyle P, Hsieh I, Zhu H. Electrocatalytic CN Coupling: Advances in Urea Synthesis and Opportunities for Alternative Products. CHEMSUSCHEM 2025:e2402566. [PMID: 40079802 DOI: 10.1002/cssc.202402566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025]
Abstract
Urea is an essential fertilizer produced through the industrial synthesis of ammonia (NH3) via the Haber-Bosch process, which contributes ≈1.2% of global annual CO2 emissions. Electrocatalytic urea synthesis under ambient conditions via CN coupling from CO2 and nitrogen species such as nitrate (NO3 -), nitrite (NO2 -), nitric oxide (NO), and nitrogen gas (N2) has gained interest as a more sustainable route. However, challenges remain due to the unclear reaction pathways for urea formation, competing reactions, and the complexity of the resulting product matrix. This review highlights recent advances in catalyst design, urea quantification, and intermediate identification in the CN coupling reaction for electrocatalytic urea synthesis. Furthermore, this review explores future prospects for industrial CN coupling, considering potential nitrogen and carbon sources and examining alternative CN coupling products, such as amides and amines.
Collapse
Affiliation(s)
- Parker Ballard-Kyle
- Department of Chemistry, University of Virginia, 409 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Isabel Hsieh
- Department of Chemistry, University of Virginia, 409 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Huiyuan Zhu
- Department of Chemistry, University of Virginia, 409 McCormick Rd, Charlottesville, VA, 22904, USA
| |
Collapse
|
10
|
Wang XH, Wu B, Zhu Y, Wang D, Li NB, Xu ZJ, Luo HQ. Design Refinement of Catalytic System for Scale-Up Mild Nitrogen Photo-Fixation. NANO-MICRO LETTERS 2025; 17:182. [PMID: 40072724 PMCID: PMC11904076 DOI: 10.1007/s40820-025-01695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Ammonia and nitric acid, versatile industrial feedstocks, and burgeoning clean energy vectors hold immense promise for sustainable development. However, Haber-Bosch and Ostwald processes, which generates carbon dioxide as massive by-product, contribute to greenhouse effects and pose environmental challenges. Thus, the pursuit of nitrogen fixation through carbon-neutral pathways under benign conditions is a frontier of scientific topics, with the harnessing of solar energy emerging as an enticing and viable option. This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation, fields ripe with potential for innovation. The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers. Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures, rational element selection, and functional planning, state-of-the-art experimental protocols for understanding photo-fixation processes, valid photocatalytic activity evaluation, and the rational design of catalysts. Furthermore, the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation. It scrutinizes the existing challenges and prospects within this burgeoning domain, aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
Collapse
Affiliation(s)
- Xiao Hu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bin Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
11
|
Luan Y, Li Y, Li Z, Zhang BY, Ou JZ. Layered Anion-Mixed Oxycompounds: Synthesis, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500477. [PMID: 39921285 PMCID: PMC11948045 DOI: 10.1002/advs.202500477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Layered anion-mixed oxycompounds have emerged as pivotal materials across diverse technological domains encompassing electronics, optics, sensing, catalysis, and energy applications. Capitalizing on the unique properties imparted by the additional anion, these compounds exhibit exceptional characteristics including ultra-large charge carrier mobility, giant second-harmonic generation, visible-light-driven photocatalysis, and outstanding thermoelectricity. This article aims to provide a comprehensive summary of layered anion-mixed oxychalcogenides, oxyhalides, oxynitrides, and oxypnictides. Organized by chemical composition and crystal structures, the classification of these oxycompounds precedes an in-depth exploration of various synthesis methodologies. Subsequently, their properties are elucidated in electronics, optics, magnetics, and ferroelectrics, contextualizing their utility in electronic, optical, and catalytic applications. The review culminates in a critical assessment of extant challenges and opportunities within this realm. Furthermore, insights are proffered into the future trajectory of research, underpinning the significance of advancing novel 2D multi-anion oxygenated compounds and their attendant applications.
Collapse
Affiliation(s)
- Yange Luan
- School of EngineeringRMIT UniversityMelbourne3000Australia
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yumin Li
- School of EngineeringRMIT UniversityMelbourne3000Australia
| | - Zhong Li
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Bao Yue Zhang
- School of EngineeringRMIT UniversityMelbourne3000Australia
| | - Jian Zhen Ou
- School of EngineeringRMIT UniversityMelbourne3000Australia
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
12
|
Hu Y, Wang D, Hu B, Lan H, Zhong W, Wang Q, Xia H, Yao M, Chen M, Du M. Ultra-precise ruler for ammonia nitrogen quantification in electrochemical synthesis experiments. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1493-1502. [PMID: 39882591 DOI: 10.1039/d4ay02288b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The field of electrochemical ammonia synthesis has made rapid advancements, attracting a large number of scientists to contribute to this area of research. Accurate detection of ammonia is crucial in this process for evaluating the efficiency and selectivity of electrocatalysts. In this study, we systematically investigate the indophenol blue method for ammonia detection, examining the effects of key factors such as solution pH, nitrate concentration, and metal ion concentration on measurement accuracy. Based on experimental optimization and mathematical algorithms, we propose an iterative refinement method supported by custom-developed code. This method automates the generation and adjustment of calibration curves, reduces measurement errors, and enhances detection precision, offering a valuable framework for the quantitative detection of ammonia and other small molecules in electrochemical synthesis.
Collapse
Affiliation(s)
- Yao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Donghui Wang
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Hu
- College of Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Haihui Lan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Wen Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Qi Wang
- School of Environmental and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Mingde Yao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, 999077, Hong Kong, P. R. China.
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
13
|
Yoon A, Kim T, Kim D, Lee YJ, Hwang SJ, Kim IY. Exfoliation of triazole-based C 3N 4.8, C 3N 6, and C 3N 7 nanosheets for efficient photocatalytic ammonia production. NANOSCALE 2025; 17:2438-2443. [PMID: 39745098 DOI: 10.1039/d4nr03639e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Atomically thin two-dimensional nanosheets of nitrogen-rich C3N4.8, C3N6, and C3N7 are synthesized by sonochemical process. Despite their high nitrogen content, their triazole-based crystal structures remain intact after exfoliation. Among the present materials, the nitrogen-richest C3N7 nanosheets display the highest photocatalytic activity for ammonia production, highlighting the synergetic effect of composition control and exfoliation.
Collapse
Affiliation(s)
- Ayoung Yoon
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Taehoon Kim
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Dokyung Kim
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Young Joo Lee
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - In Young Kim
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
14
|
Chen R, Wang J, Zhang C, Sun Y, Li J, Dong F. Purification and Value-Added Conversion of NO x under Ambient Conditions with Photo-/Electrocatalysis Technology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1013-1033. [PMID: 39760487 DOI: 10.1021/acs.est.4c08326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NOx) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NOx removal, green purification and value-added conversion of NOx under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NOx purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities. In this review, recent advances in photo-/electrocatalysis technology for the purification and value-added conversion of NOx are critically summarized. The target products and reaction mechanisms for NOx conversion systems, together with the responsible active sites, are discussed, respectively. Then, the realistic environmental practicability is proposed, including strict performance evaluation criteria and application in realistic conditions for NOx purification and upcycling by the application of photo-/electrocatalysis. Finally, the current challenges and future opportunities are proposed in terms of catalyst design, NOx conversion enhancement, reaction mechanism understanding, practical application conditions, and product separation techniques.
Collapse
Affiliation(s)
- Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunling Zhang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
15
|
Sun M, Zhang R, Sun A, Jia X, Liu X, Yu X, Xing Y. Heteropoly blue-modified ultrathin bismuth oxychloride nanosheets with oxygen vacancies for efficient photocatalytic nitrogen fixation in pure water. J Colloid Interface Sci 2025; 677:610-619. [PMID: 39116559 DOI: 10.1016/j.jcis.2024.07.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.
Collapse
Affiliation(s)
- Mingliang Sun
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Ruyu Zhang
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Ao Sun
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiaowei Jia
- College of Sciences, Hebei North University, Zhangjiakou 075000, PR China.
| | - Xianchun Liu
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| | - Xiaodan Yu
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yan Xing
- College of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
16
|
Hu Y, Zhang H, Xu M, Rao Z, Zhang X. High-Throughput Screening for Enhanced Thermal Stability of Inherently Salt-Tolerant l-Glutaminase and Its Efficient Expression in Bacillus licheniformis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28325-28334. [PMID: 39666994 DOI: 10.1021/acs.jafc.4c07745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In addressing the challenges posed by extended fermentation cycles and high-salt conditions in high-salt liquid-state fermentation soy sauce (HLFSS) production, a high-throughput screening method was devised to identify thermally stable l-glutaminase mutants. This study yielded mutants A146D and A51D, exhibiting enhanced thermal stability. Computer-aided analysis revealed that these mutations introduced additional forces, compacting the protein structure and lowering the Gibbs free energy, thereby improving thermostability. Furthermore, the incorporation of aspartic acid augmented the negative surface charge, contributing to superior salt tolerance compared to the wild type (WT). Notably, in a 25% NaCl buffer, A146D and A51D demonstrated half-lives of 72.57 and 71.31 day, respectively, surpassing the WT's 59.08 day. In a 5 L bioreactor, the optimal mutant A146D achieved a remarkable enzymatic activity of 2800.78 ± 98.1 U/mL in recombinant Bacillus licheniformis fermentation broth, setting a new benchmark. This research offers valuable insights and a foundation for the modification and application of l-glutaminase in the food industry, particularly in HLFSS brewing.
Collapse
Affiliation(s)
- Yanglu Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
17
|
Chen Y, Deng H, Liang P, Yang H, Jiang L, Yin J, Liu J, Shi S, Liu H, Li Y, Xiong Y. Antagonistic Effect of Nitrate Conversion on Photocatalytic Reduction of Aqueous Pertechnetate and Perrhenate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21882-21892. [PMID: 39570644 DOI: 10.1021/acs.est.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Sustainable photocatalysis can effectively reduce the radioactive 99TcO4- to less soluble TcO2·nH2O(s), but the reduction efficiency is highly susceptible to coexisting nitrate (NO3-). Here, we quantitatively investigate photocatalytic remediation conditions for Tc-contaminated water stimulated by the analogue perrhenate (ReO4-) in the presence of NO3-, and we elucidate the influence mechanism of NO3- by in situ characterizations. The interfering NO3- can compete with Re(VII) for the carbonyl radical (·CO2-) produced by formic acid (HCOOH) oxidation to generate nitrogen-containing products such as NH4+, NO2-, and NOx, resulting in the decrease in the Re(VII) reduction ratio. Under the conditions of 4% (volume ratio) HCOOH and pH = 3, the yield of NOx is the lowest, and the selectivity of N2 reaches 93%, which makes the overall reaction more in line with the pollution-free concept. The X-ray absorption fine structure reveals that the redox product Re(IV) mainly exists in the form of ReO2·nH2O(s) and is accompanied by a decrease with the increase in NO3- concentration. Re(VII)/Tc(VII) reduction suffers from a serious interferential effect of NO3-, whereas the higher the concentration of NO3-, the more conducive to slowing down the reoxidation of the reduction products, which is advantageous for the subsequent sequestration or separation.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Hao Deng
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Pengliang Liang
- Key Laboratory of Nuclear Environmental Simulation and Evaluation Technology, China Institute for Radiation Protection, Taiyuan 030006, P. R. China
| | - Heng Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Long Jiang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jing Yin
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jia Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Shuying Shi
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huiqiang Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuxiang Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Ying Xiong
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
18
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
19
|
Cao Y, Yuan S, Hai Y, Wang X, Li X, Luo M. Amorphous Ni 3B Promotes Electroreduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64807-64815. [PMID: 39535268 DOI: 10.1021/acsami.4c14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The electrocatalytic nitrate reduction to ammonia (NRA) can address nitrogen cycle imbalance and high carbon emissions; however, the intense competition of hydrogen evolution reaction (HER) restricts the rate of NH3 production. Herein, amorphous Ni3B (a-Ni3B) is designed to balance the NRA and HER. The NH3 yield of a-Ni3B surpasses those of pure Ni and NiO, which is attributed to the preferential adsorption of NO3- on the B and Ni sites of a-Ni3B for the NRA reaction, greatly inhibiting the HER. Furthermore, the a-Ni3B possesses advantages in NRA performance compared to crystalline Ni3B (c-Ni3B) due to more active hydrogen (*H) generated during the catalytic process. The *H in the NRA process on a-Ni3B is verified by the electron spin resonance technique. The NRA mechanism is comprehensively discussed based on the results of in situ characterization and density functional theory calculations. The a-Ni3B can enhance NH3 production by inhibiting HER, which provides ideas for sustainable NH3 synthesis.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Shengbo Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| |
Collapse
|
20
|
Jain V, Tyagi S, Roy P, Pillai PP. Ammonia Synthesis with Visible Light and Quantum Dots. J Am Chem Soc 2024; 146:32356-32365. [PMID: 39552033 DOI: 10.1021/jacs.4c06713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Light-assisted synthesis of ammonia from nitrate and nitrite sources is a sustainable approach to reduce the burden of the energy-intensive Haber-Bosch process. However, poor selectivity and the need for UV-active photocatalysts are the current bottlenecks in the synthesis of ammonia from nitrate and nitrite sources. Herein, we introduce selective visible-light-driven ammonia production from nitrate and nitrite ions with indium phosphide quantum dots (InP QDs) as the photocatalyst. The presence of catalytic indium sites and microenvironment modulation through an interplay of catalyst-reactant interactions resulted in efficient and selective ammonia formation under visible light. Ammonia was produced in an attractive yield of ∼94% in both aqueous and gaseous phases within 2 h of visible-light irradiation at room temperature. A decent formation of ammonia was observed under sunlight as well, strengthening the translational prospects of InP QD photocatalysts. Mechanistic investigations ascertained a negligible role of competing hydrogen evolution in direct nitrate reduction, confirming the active participation of photoexcited charge carriers from InP QDs in the ammonia synthesis. Kinetic studies revealed the energetically challenging nitrate-to-nitrite conversion as the rate-determining step, with subsequent reactions proceeding with ∼100% conversion to yield ammonia. A series of experiments concluded that water is the proton source in the InP QD-photocatalyzed synthesis of ammonia. Our study shows the impact of the rationally designed core and surface of InP QD-based photocatalysts in developing sustainable routes to produce ammonia beyond the Haber-Bosch process.
Collapse
Affiliation(s)
- Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Shreya Tyagi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Pradyut Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
21
|
Collado L, Pizarro AH, Barawi M, García-Tecedor M, Liras M, de la Peña O'Shea VA. Light-driven nitrogen fixation routes for green ammonia production. Chem Soc Rev 2024; 53:11334-11389. [PMID: 39387285 DOI: 10.1039/d3cs01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies. This review provides a comprehensive comparison of light-mediated N2 fixation technologies for green ammonia production, including photocatalytic, photoelectrocatalytic, PV-electrocatalytic and photothermocatalytic routes. Since these approaches are still at laboratory scale, we examine the most recent developments and discuss the open challenges for future improvements. Last, we offer a technoeconomic comparison of current and emerging ammonia production technologies, highlighting costs, barriers, recommendations, and potential opportunities for the real development of the next generation of green ammonia solutions.
Collapse
Affiliation(s)
- Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Alejandro H Pizarro
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | | |
Collapse
|
22
|
Fu R, Lei D, Li Z, Zhang H, Zhao X, Tao S. Fe 3O 4 nanostructure films as solar-thermal conversion materials for ammonia synthesis. Chem Commun (Camb) 2024; 60:13055-13058. [PMID: 39435677 DOI: 10.1039/d4cc04112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Here, we report that black photothermal materials elevate solar heating temperatures across high solar absorption and low infrared radiation. Fe3O4 nanostructure films can be heated to 350 °C under light irradiation, and this system shows effective visible-light-driven ammonia synthesis production of 3677 μg g-1 h-1 under gas-solid phase catalysis without noble metals.
Collapse
Affiliation(s)
- Rong Fu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, P. R. China.
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Di Lei
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Zhenlu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hangjian Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Shuo Tao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
23
|
Li P, Wu R, Li P, Gao S, Qin Z, Song X, Sun W, Hua Z, Wang Q, Chen S. Bi 2Ti 2O 7 Quantum Dots for Efficient Photocatalytic Fixation of Nitrogen to Ammonia: Impacts of Shallow Energy Levels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408829. [PMID: 39234814 PMCID: PMC11538629 DOI: 10.1002/advs.202408829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Photocatalytic fixation of nitrogen to ammonia represents an attractive alternative to the Haber-Bosch process under ambient conditions, and the performance can be enhanced by defect engineering of the photocatalysts, in particular, formation of shallow energy levels due to oxygen vacancies that can significantly facilitate the adsorption and activation of nitrogen. This calls for deliberate size engineering of the photocatalysts. In the present study, pyrochlore Bi2Ti2O7 quantum dots and (bulk-like) nanosheets are prepared hydrothermally by using bismuth nitrate and titanium sulfate as the precursors. Despite a similar oxygen vacancy concentration, the quantum dots exhibit a drastically enhanced photocatalytic performance toward nitrogen fixation, at a rate of 332.03 µmol g-1 h-1, which is 77 times higher than that of the nanosheet counterpart. Spectroscopic and computational studies based on density functional theory calculations show that the shallow levels arising from oxygen vacancies in the Bi2Ti2O7 quantum dots, in conjunction with the moderately constrained quantum confinement effect, facilitate the chemical adsorption and activation of nitrogen.
Collapse
Affiliation(s)
- Pengkun Li
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Runjie Wu
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Peishen Li
- College of Environmental Sciences and EngineeringKey Laboratory of Water and Sediment Sciences (MOE)Peking UniversityBeijing100871China
| | - Shuai Gao
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Zeping Qin
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Xingjian Song
- Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCA95064USA
| | - Wenming Sun
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Zhaorui Hua
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Qiang Wang
- Laboratory for Micro‐sized Functional Materials & College of Elementary Education and Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Shaowei Chen
- Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCA95064USA
| |
Collapse
|
24
|
Cao J, Zhao F, Li C, Zhao Q, Gao L, Ma T, Xu H, Ren X, Liu A. Electrocatalytic Synthesis of Urea: An In-depth Investigation from Material Modification to Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403412. [PMID: 38934550 DOI: 10.1002/smll.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Chengjie Li
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang, 262700, China
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
25
|
Fan Y, Zhou Z, Liu F, Qian L, Yu X, Huang F, Hu R, Su H, Gu H, Yan Q, He Z, Wang C. The vertical partitioning between denitrification and dissimilatory nitrate reduction to ammonium of coastal mangrove sediment microbiomes. WATER RESEARCH 2024; 262:122113. [PMID: 39032335 DOI: 10.1016/j.watres.2024.122113] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.
Collapse
Affiliation(s)
- Yijun Fan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyuan Zhou
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Qian
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangjuan Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Xiao YC, Sun SS, Zhao Y, Miao RK, Fan M, Lee G, Chen Y, Gabardo CM, Yu Y, Qiu C, Guo Z, Wang X, Papangelakis P, Huang JE, Li F, O'Brien CP, Kim J, Han K, Corbett PJ, Howe JY, Sargent EH, Sinton D. Reactive capture of CO 2 via amino acid. Nat Commun 2024; 15:7849. [PMID: 39245666 PMCID: PMC11381538 DOI: 10.1038/s41467-024-51908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Reactive capture of carbon dioxide (CO2) offers an electrified pathway to produce renewable carbon monoxide (CO), which can then be upgraded into long-chain hydrocarbons and fuels. Previous reactive capture systems relied on hydroxide- or amine-based capture solutions. However, selectivity for CO remains low (<50%) for hydroxide-based systems and conventional amines are prone to oxygen (O2) degradation. Here, we develop a reactive capture strategy using potassium glycinate (K-GLY), an amino acid salt (AAS) capture solution applicable to O2-rich CO2-lean conditions. By employing a single-atom catalyst, engineering the capture solution, and elevating the operating temperature and pressure, we increase the availability of dissolved in-situ CO2 and achieve CO production with 64% Faradaic efficiency (FE) at 50 mA cm-2. We report a measured CO energy efficiency (EE) of 31% and an energy intensity of 40 GJ tCO-1, exceeding the best hydroxide- and amine-based reactive capture reports. The feasibility of the full reactive capture process is demonstrated with both simulated flue gas and direct air input.
Collapse
Affiliation(s)
- Yurou Celine Xiao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Siyu Sonia Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yong Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yan Yu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Chenyue Qiu
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Zunmin Guo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Papangelakis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jiheon Kim
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Kai Han
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Paul J Corbett
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Jane Y Howe
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Khatamian M, Malekani M, Fazayeli M, Yavari A. Improvement of photocatalytic ammonia production of cobalt ferrite nanoparticles utilizing microporous ZSM-5 type ferrisilicate zeolite. Sci Rep 2024; 14:20301. [PMID: 39218929 PMCID: PMC11366750 DOI: 10.1038/s41598-024-71016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The development of decarbonized synthesis approaches is a critical step in the fabrication of ammonia, an indispensable chemical and a potential carbon-neutral energy carrier. In this regard, the photocatalytic production technology has gained ample attention as a sustainable alternative to energy-intensive and environmentally detrimental Haber-Bosch process. Here, we present cobalt ferrite nanoparticles supported on microporous ZSM-5 type ferrisilicate zeolite as a desirable novel photocatalyst for the ammonia generation. The zeolite introduced as a microporous support increasing the catalytically active sites. A straightforward one-pot sol-gel method was used to synthesize cobalt ferrite (CoFe2O4) and CoFe2O4/ferrisilicate (CF/FS) nanocomposites with various weight percentages (10, 25 and 50%) of CoFe2O4. The photocatalytic performances of the samples in the production of ammonia were investigated under visible light irradiation. The highest rate of NH4+ production (484.74 µmol L-1 h-1) was achieved using the CF50%/FS photocatalyst. The distribution of < 50 nm-sized CoFe2O4 nanoparticles on the surface of the zeolite, as demonstrated by TEM images, and extensive BET surface areas are presented as convincing evidences for the improved photocatalytic activity paticularly in CF50%/FS photocatalyst.
Collapse
Affiliation(s)
- Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Malekani
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Monireh Fazayeli
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Azin Yavari
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
28
|
Lee H, Kim KH, Rao RR, Park DG, Choi WH, Choi JH, Kim DW, Jung DH, Stephens IEL, Durrant JR, Kang JK. A hydrogen radical pathway for efficacious electrochemical nitrate reduction to ammonia over an Fe-polyoxometalate/Cu electrocatalyst. MATERIALS HORIZONS 2024; 11:4115-4122. [PMID: 38884595 DOI: 10.1039/d4mh00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Electrochemical nitrate (NO3-) reduction to ammonia (NH3), which is a high value-added chemical or high-energy density carrier in many applications, could become a key process overcoming the disadvantages of the Haber-Bosch process; however, current electrocatalysts have severe drawbacks in terms of activity, selectivity, and stability. Here, we report the hydrogen radical (H*) pathway as a solution to overcome this challenge, as demonstrated by efficacious electrochemical NO3- reduction to NH3 over the Fe-polyoxometalate (Fe-POM)/Cu hybrid electrocatalyst. Fe-POM, composed of Preyssler anions ([NaP5W30O110]14-) and Fe cations, facilitates efficient H* generation via H2O + e- → H* + OH-, and H* transfer to the Cu sites of the Fe-POM/Cu catalyst enables selective NO3- reduction to NH3. Operando spectroelectrochemical spectra substantiate the occurrence of the H* pathway through direct observation of Fe redox related to H* generation and Cu redox related to NO3- binding. With the H* pathway, the Fe-POM/Cu electrodes exhibit high activity for NO3- reduction to NH3 with 1.44 mg cm-2 h-1 in a 500 ppm NO3-/1 M KOH solution at -0.2 V vs. RHE, which is about 36-fold higher than that of the pristine Cu electrocatalyst. Additionally, it attains high selectivity with a faradaic efficiency of up to 97.09% at -0.2 V vs. RHE while exhibiting high catalytic stability over cycles.
Collapse
Affiliation(s)
- Heebin Lee
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon-Han Kim
- Chemical Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Reshma R Rao
- Department of Materials, Imperial College London, London W12 0BZ, UK
| | - Dong Gyu Park
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Won Ho Choi
- Department of Petrochemical Materials, Chonnam National University, 50 Daehak-ro, Yeosu-si 59631, Republic of Korea
| | - Jong Hui Choi
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Dong Won Kim
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Do Hwan Jung
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, London W12 0BZ, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK.
| | - Jeung Ku Kang
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
29
|
Li J, Du M, Wu Z, Zhang X, Xue W, Huang H, Zhong C. Engineering Single-Atom Sites with the Irving-Williams Series for the Simultaneous Co-photocatalytic CO 2 Reduction and CH 3CHO Oxidation. Angew Chem Int Ed Engl 2024; 63:e202407975. [PMID: 38818660 DOI: 10.1002/anie.202407975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The bonding effects between 3d transition-metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition-metal atoms of the spontaneous geometrical distortions, that is the Jahn-Teller effect, can alter CFSE, thereby leading to the Irving-Williams series. However, engineering single-atom sites (SASs) using the Irving-Williams series as an ideal guideline has not been reported to date. Herein, alkynyl-linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving-Williams series was employed to accurately predict the bonding effects between 3d transition-metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu-SASs/CPFs exhibits higher stability and faster charge-transfer efficiency, far surpassing other metal-SASs/CPFs. As expected, Cu-SASs/CPFs demonstrates a high photoreduction of CO2-to-CO activity (~30.3 μmol ⋅ g-1 ⋅ h-1) and an exceptional photooxidation of CH3CHO-to-CH3COOH activity (~24.7 μmol ⋅ g-1 ⋅ h-1). Interestingly, the generated *O2 - is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving-Williams to regulate the catalytic performances.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Minghao Du
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhenfa Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xinru Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
30
|
Assafiri A, Jia C, Thomas DS, Hibbert DB, Zhao C. Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping. SMALL METHODS 2024; 8:e2301373. [PMID: 38353380 DOI: 10.1002/smtd.202301373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Indexed: 08/18/2024]
Abstract
A facile NMR method is reported for analysis of ammonia from the electrochemical reduction of nitrogen, which compares a calibrated colorimetric method, a calibrated 1H NMR method and two 1H NMR direct measurements using external reference materials. Unlike spectrophotometric methods, 1H NMR requires less bench time and does not require separation of ammonia from the electrolyte. A novel approach to the problem of radiation damping in NMR measurements considered the specific role of hardware tuning. Radiation damping is suppressed improving signal-to-noise ratio and detection limit (1.5 µg L-1). The method is demonstrated to be effective for the analysis of ammonia from direct electrochemical nitrogen reduction in KOH, and from lithium-mediated nitrogen reduction in a non-aqueous solution. An uncertainty budget is prepared for the measurement of ammonia.
Collapse
Affiliation(s)
- Aya Assafiri
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Chen Jia
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Donald S Thomas
- NMR Facility, Mark Wainwright Analytical Center, University of New South Wales, Sydney, 2052, Australia
| | - David B Hibbert
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
31
|
Wang Z, Li H, Wang P, Zhu J, Yang Z, Liu Y. Comparison of anaerobic co-digestion of vacuum toilet blackwater and kitchen waste under mesophilic and thermophilic conditions: Reactor performance, microbial response and metabolic pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121725. [PMID: 38971070 DOI: 10.1016/j.jenvman.2024.121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Co-digestion of kitchen waste (KW) and black water (BW) can be considered as an attractive method to efficiently achieve the clean energy from waste. To find the optimal operation parameters for the co-digestion, the effects of different temperatures (35 and 55 °C) and BW:KW ratios on the reactor performances, microbial communities and metabolic pathways were studied. The results showed that the optimum BW:KW ratio was 1:3.6 and 1:4.5 for mesophilic and thermophilic optimal reactors, with methane production of 449.04 mL/g VS and 411.90 mL/g VS, respectively. Microbial communities showed significant differences between the reactors under different temperatures. For bacteria, increasing BW:KW ratio significantly promoted Defluviitoga enrichment (1.1%-9.5%) under thermophilic condition. For Archaea, the increase in BW:KW ratio promoted the enrichment of Methanosaeta (8.6%-56.4%) in the mesophilic reactor and Methanothermobacter (62.0%-89.2%) in the thermophilic reactor. The analysis of the key enzymes showed that, acetoclastic methanogenic pathway performed as the dominant under mesophilic condition, with high abundance of Acetate-CoA ligase (EC:6.2.1.1) and Pyruvate synthase (EC:1.2.7.1). Hydrogenotrophic methanogenic pathway was the main pathway in the thermophilic reactors, with high abundance of Formylmethanofuran dehydrogenase (EC:1.2.99.5).
Collapse
Affiliation(s)
- Ziang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Pingbo Wang
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 310000, China
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, 518115, China
| | - Ziyi Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
32
|
Masudi WL, Titilawo Y, Keshinro TA, Cowan AK. Isolation of bacteria with plant growth-promoting properties from microalgae-bacterial flocs produced in high-rate oxidation ponds. ENVIRONMENTAL TECHNOLOGY 2024; 45:4003-4016. [PMID: 37469005 DOI: 10.1080/09593330.2023.2238928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Exploring plant growth-promoting (PGP) bacterial activity of microbial components aggregated by wastewater treatment can reduce dependence on fossil fuel-derived fertilisers. This study describes the isolation and identification of bacteria from microalgae-bacteria flocs (MaB-flocs) generated in high-rate algal oxidation ponds (HRAOP) of an integrated algal pond system (IAPS) remediating municipal wastewater. Amplified 16S rRNA gene sequence analysis determined the molecular identity of the individual strains. Genetic relatedness to known PGP rhizobacteria in the NCBI GenBank database was by metagenomics. Isolated strains were screened for the production of indoles (measured as indole-3-acetic acid; IAA) and an ability to mineralise NH 4 + , PO 4 3 - , and K + . Of the twelve bacterial strains isolated from HRAOP MaB-flocs, four produced indoles, nine mineralised NH 4 + , seven solubilised P, and one K. Potential of isolated strains for PGP activity according to one-way ANOVA on ranks was: ECCN 7b > ECCN 4b > ECCN 6b > ECCN 3b = ECCN 10b > ECCN 1b = ECCN 5b > ECCN 8b > ECCN 2b > ECCN 12b > ECCN 9b = ECCN 11b. Further study revealed that cell-free filtrate from indole-producing cultures of Aeromonas strain ECCN 4b, Enterobacter strain ECCN 7b, and Arthrobacter strain ECCN 6b promoted mung bean adventitious root formation suggestive of the presence of auxin-like biological activity.
Collapse
Affiliation(s)
- Wiya L Masudi
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - Yinka Titilawo
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - Taobat A Keshinro
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| | - A Keith Cowan
- Institute for Environmental Biotechnology, Rhodes University (EBRU), Makhanda, South Africa
| |
Collapse
|
33
|
Long X, Huang F, Yao Z, Li P, Zhong T, Zhao H, Tian S, Shu D, He C. Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single-Atom Catalysts for Sustainable Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400551. [PMID: 38516940 DOI: 10.1002/smll.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Collapse
Affiliation(s)
- Xianhu Long
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
34
|
Chen X, Cheng Y, Zhang B, Zhou J, He S. Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia. Nat Commun 2024; 15:6278. [PMID: 39054325 PMCID: PMC11272931 DOI: 10.1038/s41467-024-50670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Electrocatalytic nitrate reduction to ammonia holds great promise for developing green technologies for electrochemical ammonia energy conversion and storage. Considering that real nitrate resources often exhibit low concentrations, it is challenging to achieve high activity in low-concentration nitrate solutions due to the competing reaction of the hydrogen evolution reaction, let alone considering the catalyst lifetime. Herein, we present a high nitrate reduction performance electrocatalyst based on a Co nanosheet structure with a gradient dispersion of Ru, which yields a high NH3 Faraday efficiency of over 93% at an industrially relevant NH3 current density of 1.0 A/cm2 in 2000 ppm NO3- electrolyte, while maintaining good stability for 720 h under -300 mA/cm2. The electrocatalyst maintains high activity even in 62 ppm NO3- electrolyte. Electrochemical studies, density functional theory, electrochemical in situ Raman, and Fourier-transformed infrared spectroscopy confirm that the gradient concentration design of the catalyst reduces the reaction energy barrier to improve its activity and suppresses the catalyst evolution caused by the expansion of the Co lattice to enhance its stability. The gradient-driven design in this work provides a direction for improving the performance of electrocatalytic nitrate reduction to ammonia.
Collapse
Affiliation(s)
- Xinhong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yumeng Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Jia Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Sisi He
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
35
|
Huang L, Peng T, Wang R, He B, Jin J, Wang H, Gong Y. Construction of hierarchical In 2O 3/In 2S 3-ZnCdS ternary microsphere heterostructures for efficient photocatalytic nitrogen fixation. Dalton Trans 2024; 53:12291-12300. [PMID: 38984478 DOI: 10.1039/d4dt01605j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In2O3/In2S3-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In2O3/In2S3-ZCS photocatalyst was proved to be highly efficient in converting N2 to NH3 under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH4+ yield of In2O3/In2S3-0.5ZCS reached a significant level of 71.2 μmol g-1 h-1, which was 10.47 times higher than that of In2O3 (6.8 μmol g-1 h-1) and 3.22 times higher than that of In2O3/In2S3 (22.1 μmol g-1 h-1). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In2S3, and In2O3 in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.
Collapse
Affiliation(s)
- Liangliang Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Tao Peng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
36
|
Zhu H, Xu X, Wang Y, Ding J, Yu X, Liu X, Zeng Z, Wang H, Li Z, Wang Y. Electron repulsion tuned electronic structure of TiO 2 by fluorination for efficient and selective photocatalytic ammonia generation. NANOSCALE 2024; 16:12992-12999. [PMID: 38910517 DOI: 10.1039/d4nr01787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The photocatalytic conversion of nitrogen into high-value ammonia products holds tremendous potential in the global nitrogen cycle. However, the activation of N2 and competition of hydrogen evolution limit the improvement of nitrogen fixation performance. In this study, we developed a fluorinated TiO2 (F-TiO2) using a hydrothermal-annealing method. The incorporation of F dopants not only enhances the adsorption and activation of N2 through electronic structure regulation, but also facilitates an in situ increase in active sites via the electron repulsion effect between F and Ti atoms. In addition, the presence of F on the surface effectively improved the nitrogen supply problem and optimized the nitrogen fixation selectivity for its hydrophobic modulation. The NH3 yield of the F-TiO2 photocatalyst reached 63.8 μmol h-1 g-1, which was 8.5 times higher than that of pure TiO2. And the selectivity experiment showed that the electronic ratio of NH3 to H2 production reached 0.890. This research offers valuable insights for the design of highly efficient and selective nitrogen-fixing photocatalysts.
Collapse
Affiliation(s)
- Huiling Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Xiangran Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Yongchao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Jian Ding
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Xinru Yu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Xiaoyi Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhaowu Zeng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Huan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Yang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
37
|
Chipoco Haro DA, Barrera L, Iriawan H, Herzog A, Tian N, Medford AJ, Shao-Horn Y, Alamgir FM, Hatzell MC. Electrocatalysts for Inorganic and Organic Waste Nitrogen Conversion. ACS Catal 2024; 14:9752-9775. [PMID: 38988657 PMCID: PMC11232026 DOI: 10.1021/acscatal.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Anthropogenic activities have disrupted the natural nitrogen cycle, increasing the level of nitrogen contaminants in water. Nitrogen contaminants are harmful to humans and the environment. This motivates research on advanced and decarbonized treatment technologies that are capable of removing or valorizing nitrogen waste found in water. In this context, the electrocatalytic conversion of inorganic- and organic-based nitrogen compounds has emerged as an important approach that is capable of upconverting waste nitrogen into valuable compounds. This approach differs from state-of-the-art wastewater treatment, which primarily converts inorganic nitrogen to dinitrogen, and organic nitrogen is sent to landfills. Here, we review recent efforts related to electrocatalytic conversion of inorganic- and organic-based nitrogen waste. Specifically, we detail the role that electrocatalyst design (alloys, defects, morphology, and faceting) plays in the promotion of high-activity and high-selectivity electrocatalysts. We also discuss the impact of wastewater constituents. Finally, we discuss the critical product analyses required to ensure that the reported performance is accurate.
Collapse
Affiliation(s)
- Danae A Chipoco Haro
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue 771 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Luisa Barrera
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 Ferst Ave, Atlanta, Georgia 30309, United States
| | - Haldrian Iriawan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Antonia Herzog
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nianhan Tian
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew J Medford
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Faisal M Alamgir
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue 771 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Marta C Hatzell
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 Ferst Ave, Atlanta, Georgia 30309, United States
| |
Collapse
|
38
|
Sui J, Cui Y, Zhang J, Li S, Zhao Y, Bai M, Feng G, Wu H. Enhanced biomass production and harvesting efficiency of Chlamydomonas reinhardtii under high-ammonium conditions by powdered oyster shell. BIORESOURCE TECHNOLOGY 2024; 403:130904. [PMID: 38801957 DOI: 10.1016/j.biortech.2024.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Chlamydomonas reinhardtii prefers ammonium (NH4+) as a nitrogen source, but its late-stage growth under high-NH4+ concentrations (0.5 ∼ 1 g/L) is retarded due to medium acidification. In this study, oyster shell powders were shown to increase the tolerance of C. reinhardtii to NH4+ supplementation at 0.7 g/L in TAP medium in 1-L bubble-column bioreactors, resulting in a 22.9 % increase in biomass production, 62.1 % rise in unsaturated fatty acid accumulation, and 19.2 % improvement in harvesting efficiency. Powdered oyster shell mitigated medium acidification (pH 7.2-7.8) and provided dissolved inorganic carbon up to 8.02 × 103 μmol/L, facilitating a 76.3 % NH4+ consumption, release of up to 189 mg/L of Ca2+, a 42.1 % reduction in ζ-potential and 27.7 % increase in flocculation activity of microalgae cells. This study highlights a promising approach to utilize powdered oyster shell as a liming agent, supplement carbon source, and bio-flocculant for enhancing biomass production and microalgae harvesting in NH4+-rich environments.
Collapse
Affiliation(s)
- Jikang Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxuan Cui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jinku Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Mingkai Bai
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Guangxin Feng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
39
|
Santhosh CR, Chinnam S, Madhu GM, Kottam N, Chigurupati S, Sankannavar R. Review on electrocatalytic nitrate reduction to ammonia: advances, challenges and future prospects. IONICS 2024; 30:3091-3099. [DOI: 10.1007/s11581-024-05578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 01/12/2025]
|
40
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
41
|
Wang ZY, Yuan B, Zhang FG, Chen Y, Tang JP, Bao L, Yuan YJ. Photocatalytic Nitrogen Fixation Coupled with the Generation of Value-Added Chemicals from N 2 and Cellulose over MoO 3 Nanosheets. Inorg Chem 2024; 63:9715-9719. [PMID: 38748179 DOI: 10.1021/acs.inorgchem.4c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Photocatalytic nitrogen fixation from N2 provides an alternative strategy for ammonia (NH3) production, but it was limited by the consumption of a sacrificial electron donor for the currently reported half-reaction system. Here, we use naturally abundant and renewable cellulose as the sacrificial reagent for photocatalytic nitrogen fixation over oxygen-vacancy-modified MoO3 nanosheets as the photocatalyst. In this smartly designed photocatalytic system, the photooxidation of cellulose not only generates value-added chemicals but also provides electrons for the N2 reduction reaction and results in the production of NH3 with a maximum rate of 68 μmol·h-1·g-1. Also, the oxygen vacancies provide efficient active sites for both cellulose oxygenolysis and nitrogen fixation reactions. This work represents useful inspiration for realizing nitrogen fixation coupled with the generation of value-added chemicals from N2 and cellulose through a photocatalysis strategy.
Collapse
Affiliation(s)
- Zi-Yi Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Beijia Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Fu-Guang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Ji-Ping Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
42
|
Qi R, Wang Z, Zhong M, Wang C, Bai F, Lu X. Synergistic Integration of Amorphous Cobalt Phosphide with a Conductive Channel for Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308311. [PMID: 38072774 DOI: 10.1002/smll.202308311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Indexed: 05/18/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia (NO3RR) is regarded as a viable alternative reaction to "Haber Bosch" process. Nevertheless, it remains a major challenge to explore economical and efficient electrocatalysts that deliver high NH3 yield rates and Faraday efficiencies (FE). Here, it demonstrates the fabrication of a 3D core-shell structured Co-carbon nanofibers (CNF)/ZIF-CoP for NO3RR application. Benefitting from the distinct electron transport property of Co-CNF and desirable mass transfer ability from amorphous CoP framework, the as-prepared Co-CNF/ZIF-CoP exhibits large NH3 FE (96.8 ± 3.4% at -0.1 V vs reversible hydrogen electrode (RHE)) and high yield rate (38.44 ± 0.65 mg cm-2 h-1 at -0.6 V vs RHE), which are better than Co-CNF/ZIF-crystal CoP. Density functional theory (DFT) calculations further reveal that amorphous CoP presents a lower energy barrier in the rate determination step of the protonation of *NO to produce *NOH intermediates compared with crystal CoP, resulting in a superior NO3RR performance. Eventually, an aqueous galvanic Zn-NO3 - battery is assembled by using Co-CNF/ZIF-CoP as cathode material to achieve efficient production of NH3 whilst simultaneously supplying electrical power. This work offers a reliable strategy to construct amorphous metal phosphide framework on conducting CNF as efficient electrocatalyst and enriches its promising application for NO3RR.
Collapse
Affiliation(s)
- Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhiwei Wang
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fuquan Bai
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
43
|
Zhou L, Chen X, Zhu S, You K, Wang ZJ, Fan R, Li J, Yuan Y, Wang X, Wang J, Chen Y, Jin H, Wang S, Lv JJ. Two-dimensional Cu Plates with Steady Fluid Fields for High-rate Nitrate Electroreduction to Ammonia and Efficient Zn-Nitrate Batteries. Angew Chem Int Ed Engl 2024; 63:e202401924. [PMID: 38366134 DOI: 10.1002/anie.202401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Collapse
Affiliation(s)
- Limin Zhou
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Xueqiu Chen
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Shaojun Zhu
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Kun You
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Zheng-Jun Wang
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Ru Fan
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Jun Li
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Yifei Yuan
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, M4Y1M7, Canada
| | - Yihuang Chen
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Huile Jin
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Shun Wang
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Jing-Jing Lv
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
44
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
45
|
Yue L, Zeng Z, Ren X, Yuan S, Xia C, Hu X, Zhao L, Zhuang L, He Y. Synthesis of Efficient S-Scheme Heterostructures Composed of BiPO 4 and KNbO 3 for Photocatalytic N 2 Fixation and Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4953-4965. [PMID: 38377576 DOI: 10.1021/acs.langmuir.3c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The preparation of catalysts with heterojunction structures is a strategy to achieve efficient charge separation and high photocatalytic activity of photocatalysts. In this work, BiPO4/KNbO3 heterostructure photocatalysts were fabricated by a combination of hydrothermal and precipitation methods and subsequently employed in catalyzing N2-to-NH3 conversion and RhB degradation under light illumination. Morphological analysis revealed the effective dispersion of BiPO4 on KNbO3 nanocubes. Band structure analysis suggests that KNbO3 and BiPO4 exhibit suitable band potentials to form an S-scheme heterojunction. Under the joint action of the built-in electric field at the interface, energy band bending, and Coulomb attraction force, photogenerated electrons and holes with low redox performance are consumed, while those with high redox performance are effectively spatially separated. Consequently, the BiPO4/KNbO3 shows enhanced photocatalytic activity. The NH3 production rate of the optimal sample is 2.6 and 5.8 times higher than that of KNbO3 and BiPO4, respectively. The enhanced photoactivity of BiPO4/KNbO3 is also observed in the photocatalytic degradation of RhB. This study offers valuable insights for the design and preparation of S-scheme heterojunction photocatalysts.
Collapse
Affiliation(s)
- Lin Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Zhihao Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Xujie Ren
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Shude Yuan
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Chuanqi Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Leihong Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Lvchao Zhuang
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Yiming He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| |
Collapse
|
46
|
He ZK, Li K, Kou R, Zhang W, Zhao J, Gao Z, Song YY. Customizing Wettability of Defect-Rich CeO 2/TiO 2 Nanotube Arrays for Humidity-Resistant, Ultrafast, and Sensitive Ammonia Response. ACS Sens 2024; 9:1014-1022. [PMID: 38334494 DOI: 10.1021/acssensors.3c02684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In all their applications, gas sensors should satisfy several requirements, including low cost, reduced energy consumption, fast response/recovery, high sensitivity, and reliability in a broad humidity range. Unfortunately, the fast response/recovery and sensing reliability under high humidity conditions are often still missing, especially those working at room temperature. In this study, a humidity-resistant gas sensor with an ultrafast response/recovery rate was designed by integrating a defect-rich semiconducting sensing interface and a self-assembled monolayer (SAM) with controllable wettability. As a proof-of-concept application, ammonia (NH3), one of the atmospheric and indoor pollutants, was selected as the target gas. The decoration of interconnected defective CeO2 nanowires on spaced TiO2 nanotube arrays (NTAs) provided superior NH3 sensing performances. Moreover, we showed that manipulating the functional end group of SAMs is an efficient and simple method to adjust the wettability, by which 86% sensitivity retention with an ultrafast response (within 5 s) and a low limit of detection (45 ppb) were achieved even at 75% relative humidity and room temperature. This work provides a new route toward the comprehensive design and application of metal oxide semiconductors for trace gas monitoring under harsh conditions, such as those of agricultural, environmental, and industrial fields.
Collapse
Affiliation(s)
- Zhen-Kun He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Keke Li
- College of Science, Northeastern University, Shenyang 110819, China
| | - Rongyang Kou
- College of Science, Northeastern University, Shenyang 110819, China
| | - Wenwen Zhang
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
47
|
Shokouhfar N, Kilaparthi SK, Barras A, Abraham BM, Addad A, Roussel P, Bhatt S, Jain SL, Szunerits S, Morsali A, Boukherroub R. Solar-Driven Ammonia Production through Engineering of the Electronic Structure of a Zr-Based MOF. Inorg Chem 2024; 63:2327-2339. [PMID: 38270093 DOI: 10.1021/acs.inorgchem.3c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a hydrogen carrier and a vital component in fertilizer production, ammonia (NH3) is set to play a crucial role in the planet's future. While its industrial production feeds half of the global population, it uses fossil fuels and emits greenhouse gases. To tackle this issue, photocatalytic nitrogen fixation using visible light is emerging as an effective alternative method. This strategy avoids carbon dioxide (CO2) emissions and harnesses the largest share of sunlight. In this work, we successfully incorporated a 5-nitro isophthalic acid linker into MOF-808 to introduce structural defects and open metal sites. This has allowed modulation of the electronic structure of the MOF and effectively reduced the band gap energy from 3.8 to 2.6 eV. Combination with g-C3N4 enhanced further NH3 production, as these two materials possess similar band gap energies, and g-C3N4 has shown excellent performance for this reaction. The nitro groups serve as acceptors, and their integration into the MOF structure allowed effective interaction with the free electron pairs on N-(C)3 in the g-C3N4 network nodes. Based on DFT calculations, it was concluded that the adsorption of N2 molecules on open metal sites caused a decrease in their triple bond energy. The modified MOF-808 showed superior performance compared with the other MOFs studied in terms of N2 photoreduction under visible light. This design concept offers valuable information about how to engineer band gap energy in MOF structures and their combination with appropriate semiconductors for solar-powered photocatalytic reactions, such as N2 or CO2 photoreduction.
Collapse
Affiliation(s)
- Nasrin Shokouhfar
- Department of Chemistry, Tarbiat Modares University, Tehran 14117-13116, Iran
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Sravan Kumar Kilaparthi
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - B Moses Abraham
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ahmed Addad
- Unité Matériaux et Transformations CNRS UMR 8207─Université de Lille, Villeneuve d'Ascq 59655, France
| | - Pascal Roussel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS, Lille F59000, France
| | - Sakshi Bhatt
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | - Suman Lata Jain
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Ali Morsali
- Department of Chemistry, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| |
Collapse
|
48
|
Zhao Y, Liang S, Zhao Y, Zhang H, Zheng X, Li Z, Chen L, Tang J. Hollow mesoporous carbon supported Co-modified Cu/Cu 2O electrocatalyst for nitrate reduction reaction. J Colloid Interface Sci 2024; 655:208-216. [PMID: 37935072 DOI: 10.1016/j.jcis.2023.10.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
The electroreduction of nitrate (NO3-) pollutants to ammonia (NH3) provides a sustainable approach for both wastewater treatment and NH3 synthesis. However, electroreduction of nitrate requires multi-step electron and proton transfer, resulting in a sluggish reaction rate. Herein, we synthesized a Co-modified Cu/Cu2O catalyst supported on hollow mesoporous carbon substrates (Co/Cu/Cu2O-MesoC) by a one-step microwave-assisted reduction method. At -0.25 V vs. reversible hydrogen electrode (RHE), Co/Cu/Cu2O-MesoC shows a Faradaic efficiency (FE) of 100 ± 1% in 0.1 M NO3-. Notably, the maximum NH3 yield rate (YieldNH3) reaches 6.416 ± 0.78 mmol mgcat-1h-1 at -0.45 V vs. RHE, which is much better than most of the previous reports. Electrochemical evaluation and in-situ Fourier transform infrared (FTIR) spectroscopy reveal that the addition of Co could promote water electrolysis, and the generated H* is involved in the following hydrogenation of intermediates, ultimately leading to faster kinetics and energetics during electrocatalytic conversion of NO3- to NH3. This synergetic electrocatalysis strategy opens a new avenue for the development of high-activity, selectivity, and stability catalysts.
Collapse
Affiliation(s)
- Yuxiao Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shaozhen Liang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hongjuan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhiqian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China; Institute of Eco-Chongming, Shanghai 202162, China.
| | - Jing Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai 200062, China; Institute of Eco-Chongming, Shanghai 202162, China.
| |
Collapse
|
49
|
Liang M, Shao X, Lee H. Recent Developments of Dual Single-Atom Catalysts for Nitrogen Reduction Reaction. Chemistry 2024; 30:e202302843. [PMID: 37768323 DOI: 10.1002/chem.202302843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Ammonia is vital for fertilizer production, hydrogen storage, and alternative fuels. The conventional Haber-Bosch process for ammonia production is energy-intensive and environmentally harmful. Designing environmentally friendly and low-energy consumption strategies for electrocatalytic N2 reduction reaction (ENRR) in mild conditions is meaningful. Single-atom catalysts (SACs) have been studied extensively for NRR due to their high atomic utilization and unique electronic structure but are limited by their poor faradic efficiency and low ammonia formation yield. Dual single-atom catalysts (DSACs) have recently emerged as a promising solution for the effective activation of molecular N2 , providing diverse active sites and synergistic interactions between adjacent atoms. In this review, we summarize the latest advances in metal DSACs for electrochemical ENRR based on both theoretical calculations and experimental studies, including aspects such as their variety, coordination, support, N2 adsorption and activity mechanisms, the characterization of NRR and electrochemical cell Configuration. We also address challenges and prospects in this rapidly evolving field, providing a comprehensive overview of DSACs for ENRR.
Collapse
Affiliation(s)
- Mengfang Liang
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Korea
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Korea
- Creative Research Institute, Sungkyunkwan University, 16419, Suwon, Korea
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, 16419, Suwon, Korea
| |
Collapse
|
50
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|