1
|
Gao B, Sun Q. Post-translational assembly of multi-functional antibody. Biotechnol Adv 2025; 80:108533. [PMID: 39929326 DOI: 10.1016/j.biotechadv.2025.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/27/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
The advent of multi-specific antibodies has introduced a significant advantage over traditional monoclonal antibody therapeutics by engaging multiple targets and pathways. This review delves into the post-translational assembly techniques for multi-specific antibodies, highlighting the innovations and challenges associated with approaches of chemical conjugation, oligonucleotide-mediated assembly, and protein-protein interactions. Chemical conjugation methods have evolved to enhance the assembly process's specificity and flexibility, enabling transient engagement and versatile antibody formats. Meanwhile, oligonucleotide-mediated assembly leverages the precision of Watson-Crick base pairing, granting unmatched control over the antibody's structure and functional orientation. Additionally, protein-protein interaction strategies, notably through SpyTag/SpyCatcher systems, present a direct assembly approach without necessitating ancillary modifications, streamlining the production process. This review summarizes the significance of these methodologies in generating antibodies with diverse structures and multi-target engagement capabilities, underscoring their potential in improving therapeutic efficacy and reducing production complexity.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Interdisciplinary Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
2
|
Zhou L, Bi J, Chang S, Bai Z, Yu J, Wang R, Li Z, Zhang X, Chou JJ, Pan L. Self-Assembled Antibody-Oligonucleotide Conjugates for Targeted Delivery of Complementary Antisense Oligonucleotides. Angew Chem Int Ed Engl 2025; 64:e202415272. [PMID: 39325927 DOI: 10.1002/anie.202415272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Antibody-oligonucleotide conjugate (AOC) affords preferential cell targeting and enhanced cellular uptake of antisense oligonucleotide (ASO). Here, we have developed a modular AOC (MAOC) approach based on accurate self-assembly of separately prepared antibody and ASO modules. Homogeneous multimeric AOC with defined ASO-to-antibody ratio were generated by L-DNA scaffold mediated precise self-assembly of antibodies and ASOs. The MAOC approach has been implemented to deliver exon skipping ASOs via transferrin receptor (TfR1) mediated internalization. We discovered an anti-TfR1 sdAb that can greatly enhance nuclear delivery of ASOs. Cryo-EM structure of the sdAb-TfR1 complex showed a new epitope that does not overlap with the binding sites of endogenous TfR1 ligands. In vivo functional analyses of MAOCs with one ASO for single exon skipping and two ASOs for double exon skipping showed that both ASO concentration and exon skipping efficacy of MAOC in cardiac and skeletal muscles are dramatically higher than conventional ASOs in the transgenic human TfR1 mouse model. MAOC treatment was well tolerated in vivo and not associated with any toxicity-related morbidity or mortality. Collectively, our data suggest that the self-assembled MAOC is a viable option for broadening the therapeutic application of ASO via multi-specific targeting and delivery.
Collapse
Affiliation(s)
| | - Jie Bi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | | | - Junqi Yu
- Assembly Medicine, LLC, Shanghai, 201203, China
| | - Ruru Wang
- Assembly Medicine, LLC, Shanghai, 201203, China
| | - Zhihang Li
- Assembly Medicine, LLC, Shanghai, 201203, China
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - James J Chou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, State Key Laboratory of Chemical Biology, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liqiang Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Messaoudi S, Wai K, Marple A, Baniahmad SF, Wylie RG, Pelletier M, Craig M, Durocher Y, Greschner AA, Gauthier MA. Rapid Systematic Screening of Bispecific Antibody Surrogate Geometries for T-Cell Engagement Using DNA Nanotechnology. J Am Chem Soc 2024; 146:29824-29835. [PMID: 39412838 PMCID: PMC11529601 DOI: 10.1021/jacs.4c11648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
Bispecific antibodies (bsAbs) are emerging immune-therapeutics, and many formats exist that differ considerably in structure. However, little systematic data exist about how the spatial organization of their components influences activity, requiring innovative approaches combining empirical and quantitative frameworks. This study presents a modular DNA nanotechnology platform to generate numerous bsAbs with surrogate geometries that span the structural features of the BiTE, IgG-like, and IgG-conjugate platforms to screen for T-cell engagement. Results highlight interesting structure-activity relationships regarding bsAb potency and selectivity and raise questions regarding the molecular phenomena underlying activity. To elucidate some effects, the platform was paired with a simple mathematical model. This work is thus one of the first to systematically investigate and reveal the importance of the spatial organization of bsAb components on activity and equally provides an accessible and convenient tool for rapidly mapping out such trends for other combinations of target epitopes.
Collapse
Affiliation(s)
- Sabrine Messaoudi
- Institut
National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| | - Kevin Wai
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - April Marple
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Seyed Farzad Baniahmad
- Human
Health Therapeutics Research Centre, National
Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - Ryan G. Wylie
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Marianne Pelletier
- Sainte-Justine
University Hospital Azrieli Research Centre, Montreal, Quebec H3T 1C5, Canada
- Département
de Mathématiques et de Statistique, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Morgan Craig
- Sainte-Justine
University Hospital Azrieli Research Centre, Montreal, Quebec H3T 1C5, Canada
- Département
de Mathématiques et de Statistique, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Yves Durocher
- Human
Health Therapeutics Research Centre, National
Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - Andrea A. Greschner
- Institut
National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| | - Marc A. Gauthier
- Institut
National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| |
Collapse
|
4
|
Smidt JM, Märcher A, Skaanning MK, El-Chami K, Teodori L, Omer M, Kjems J, Gothelf KV. Dual-Targeting of the HER2 Cancer Receptor with an Antibody-Directed Enzyme and a Nanobody-Guided MMAE Prodrug Scaffold. Chembiochem 2024; 25:e202400437. [PMID: 38945824 DOI: 10.1002/cbic.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug. Dual-targeting of the constructs to two proximal epitopes of HER2 was shown by flow cytometry, and a dual-targeted enzymatic drug release assay revealed cytotoxicity upon prodrug activation specifically for HER2-positive cancer cells. The specific delivery and activation of prodrugs in this way could potentially be used to decrease systemic side effects and increase drug efficacy, and utilization of Tz-Sia provides an opportunity to combine the local chemotherapeutic effect of the DuADEPT with an anticancer immune response.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Mads Koch Skaanning
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kassem El-Chami
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
5
|
Ma PQ, Huang FW, Xie YQ, Li HR, Li HD, Ye BC, Yin BC. Universal DNA-Based Sensing Toolbox for Programming Cell Functions. J Am Chem Soc 2023; 145:28224-28232. [PMID: 38108623 DOI: 10.1021/jacs.3c11232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
By recombining natural cell signaling systems and further reprogramming cell functions, use of genetically engineered cells and bacteria as therapies is an innovative emerging concept. However, the inherent properties and structures of the natural signal sensing and response pathways constrain further development. We present a universal DNA-based sensing toolbox on the cell surface to endow new signal sensing abilities for cells, control cell states, and reprogram multiple cell functions. The sensing toolbox contains a triangular-prismatic-shaped DNA origami framework and a sensing core anchored inside the internal confined space to enhance the specificity and efficacy of the toolbox. As a proof of principle, the sensing toolbox uses the customizable sensing core with signal sensing switches and converters to recognize unconventional signal inputs, deliver functional components to cells, and then control cell responses, including specific tumor cell death, immune cell disinhibition and adhesion, and bacterial expression. This work expands the diversity of cell sensing signals and reprograms biological functions by constructing nanomechanical-natural hybrid cells, providing new strategies for engineering cells and bacteria in diagnosis and treatment applications.
Collapse
Affiliation(s)
- Pei-Qiang Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Wen Huang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Ya-Qi Xie
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Hong-Rui Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Hua-Dong Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
6
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
7
|
Winegar PH, Figg CA, Teplensky MH, Ramani N, Mirkin CA. Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers. Chem 2022; 8:3018-3030. [PMID: 36405374 PMCID: PMC9674055 DOI: 10.1016/j.chempr.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.
Collapse
Affiliation(s)
- Peter H. Winegar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - C. Adrian Figg
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - Michelle H. Teplensky
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Lead contact
| |
Collapse
|
8
|
Watson EE, Winssinger N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules 2022; 12:biom12101523. [PMID: 36291732 PMCID: PMC9599799 DOI: 10.3390/biom12101523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids and proteins form two of the key classes of functional biomolecules. Through the ability to access specific protein-oligonucleotide conjugates, a broader range of functional molecules becomes accessible which leverages both the programmability and recognition potential of nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize the available conjugation strategies to access such chimeric molecules and highlight some key case study examples within the field to showcase the power and utility of such technology.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (E.E.W.); (N.W.)
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, CH-1205 Geneva, Switzerland
- Correspondence: (E.E.W.); (N.W.)
| |
Collapse
|
9
|
Abstract
The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Märcher A, Kumar V, Andersen VL, El-Chami K, Nguyen TJD, Skaanning MK, Rudnik-Jansen I, Nielsen JS, Howard KA, Kjems J, Gothelf KV. Functionalized Acyclic (l)-Threoninol Nucleic Acid Four-Way Junction with High Stability In Vitro and In Vivo. Angew Chem Int Ed Engl 2022; 61:e202115275. [PMID: 35352451 PMCID: PMC9324938 DOI: 10.1002/anie.202115275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 01/04/2023]
Abstract
Oligonucleotides are increasingly being used as a programmable connection material to assemble molecules and proteins in well-defined structures. For the application of such assemblies for in vivo diagnostics or therapeutics it is crucial that the oligonucleotides form highly stable, non-toxic, and non-immunogenic structures. Only few oligonucleotide derivatives fulfil all of these requirements. Here we report on the application of acyclic l-threoninol nucleic acid (aTNA) to form a four-way junction (4WJ) that is highly stable and enables facile assembly of components for in vivo treatment and imaging. The aTNA 4WJ is serum-stable, shows no non-targeted uptake or cytotoxicity, and invokes no innate immune response. As a proof of concept, we modify the 4WJ with a cancer-targeting and a serum half-life extension moiety and show the effect of these functionalized 4WJs in vitro and in vivo, respectively.
Collapse
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Veronica L Andersen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kassem El-Chami
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Thuy J D Nguyen
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Mads K Skaanning
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jesper S Nielsen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
11
|
Märcher A, Kumar V, Andersen VL, El‐Chami K, Nguyen TJD, Skaanning MK, Rudnik‐Jansen I, Nielsen JS, Howard KA, Kjems J, Gothelf KV. Functionalized Acyclic (
l
)‐Threoninol Nucleic Acid Four‐Way Junction with High Stability In Vitro and In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Veronica L. Andersen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kassem El‐Chami
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Thuy J. D. Nguyen
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Mads K. Skaanning
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Imke Rudnik‐Jansen
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Jesper S. Nielsen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
12
|
He Q, Liu Y, Li K, Wu Y, Wang T, Tan Y, Jiang T, Liu X, Liu Z. Deoxyribonucleic acid anchored on cell membranes for biomedical application. Biomater Sci 2021; 9:6691-6717. [PMID: 34494042 DOI: 10.1039/d1bm01057c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineering cellular membranes with functional molecules provides an attractive strategy to manipulate cellular behaviors and functionalities. Currently, synthetic deoxyribonucleic acid (DNA) has emerged as a promising molecular tool to engineer cellular membranes for biomedical applications due to its molecular recognition and programmable properties. In this review, we summarized the recent advances in anchoring DNA on the cellular membranes and their applications. The strategies for anchoring DNA on cell membranes were summarized. Then their applications, such as immune response activation, receptor oligomerization regulation, membrane structure mimicking, cell-surface biosensing, and construction of cell clusters, were listed. The DNA-enabled intelligent systems which were able to sense stimuli such as DNA strands, light, and metal ions were highlighted. Finally, insights regarding the remaining challenges and possible future directions were provided.
Collapse
Affiliation(s)
- Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China. .,Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
13
|
Facile Generation of Potent Bispecific Fab via Sortase A and Click Chemistry for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13184540. [PMID: 34572769 PMCID: PMC8467688 DOI: 10.3390/cancers13184540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The formats of bispecific antibody have been investigated for many years to enhance the stability of the structure and anti-tumor efficacy. One of the formats combining two Fabs at their C termini provides unmodified variable region and comparable activity to other fragment-based bispecific antibodies that are usually combined in a head-to-tail manner. However, the current strategy to produce the BiFab molecule is limited to a semisynthetic method that introduces unnatural amino acid to antibodies’ sequences during production. To improve the application of BiFab format in investigational biodrugs, we have applied sortase A-mediated “bio-click” chemistry to generate BiFab, for facile assembly of Fab molecules that have been expressed and stored as BiFab module candidates. The BiFabs made by our method stimulate T cell proliferation and activation with favorable in vitro and in vivo anti-tumor activit. Our results indicate that BiFab made by sortase A-mediated click chemistry could be used to efficiently generate various BiFabs with high potency, which further supports personalized tumor immunotherapy in the future. Abstract Bispecific antibodies (BsAbs) for T cell engagement have shown great promise in cancer immunotherapy, and their clinical applications have been proven in treating hematological malignance. Bispecific antibody binding fragment (BiFab) represents a promising platform for generating non-Fc bispecific antibodies. However, the generation of BiFab is still challenging, especially by means of chemical conjugation. More conjugation strategies, e.g., enzymatic conjugation and modular BiFab preparation, are needed to improve the robustness and flexibility of BiFab preparation. We successfully used chemo-enzymatic conjugation approach to generate bispecific antibody (i.e., BiFab) with Fabs from full-length antibodies. Paired click handles (e.g., N3 and DBCO) was introduced to the C-terminal LPETG tag of Fabs via sortase A mediated transpeptidation, followed by site-specific conjugation between two click handle-modified Fabs for BiFab generation. Both BiFabCD20/CD3 (EC50 = 0.26 ng/mL) and BiFabHer2/CD3 exhibited superior efficacy in mediating T cells, from either PBMC or ATC, to kill target tumor cell lines while spared antigen-negative tumor cells in vitro. The BiFabCD20/CD3 also efficiently inhibited CD20-positive tumor growth in mouse xenograft model. We have established a facile sortase A-mediated click handle installation to generate homogeneous and functional BiFabs. The exemplary BiFabs against different targets showed superior efficacy in redirecting and activating T cells to specifically kill target tumor cells, demonstrating the robustness of sortase A-mediated “bio-click” chemistry in generating various potent BiFabs. This approach also holds promise for further efficient construction of a Fab derivative library for personalized tumor immunotherapy in the future.
Collapse
|
14
|
Zhang QL, Zheng D, Dong X, Pan P, Zeng SM, Gao F, Cheng SX, Zhang XZ. A Strategy Based on the Enzyme-Catalyzed Polymerization Reaction of Asp-Phe-Tyr Tripeptide for Cancer Immunotherapy. J Am Chem Soc 2021; 143:5127-5140. [DOI: 10.1021/jacs.1c00945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiu-Ling Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Diwei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, P.R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Si-Min Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|