1
|
Zhao FX, Wang MH, Huang ZY, Zhu MH, Chen C, Pan QH, Yu B, Wang YT, Guo X, Qian YJ, Zhang LW, Qiu XJ, Sheng SZ, He Z, Wang JL, Yu SH. Bio-inspired Mechanically Responsive Smart Windows for Visible and Near-Infrared Multiwavelength Spectral Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408192. [PMID: 39155803 DOI: 10.1002/adma.202408192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Mechanochromic light control technology that can dynamically regulate solar irradiation is recognized as one of the leading candidates for energy-saving windows. However, the lack of spectrally selective modulation ability still hinders its application for different scenarios or individual needs. Here, inspired by the generation of structure color and color change of living organisms, a simple layer-by-layer assembly approach toward large-area fabricating mechanically responsive film for visible and near-infrared multiwavelength spectral modulation smart windows is reported here. The assembled SiO2 nanoparticles and W18O49 nanowires enable the film with an optical modulation rate of up to 42.4% at the wavelength of 550 nm and 18.4% for the near-infrared region, separately, and the typical composite film under 50% stretching shows ≈41.6% modulation rate at the wavelength of 550 nm with NIR modulation rate less than 2.7%. More importantly, the introduction of the multilayer assembly structure not only optimizes the film's optical modulation but also enables the film with high stability during 100 000 stretching cycles. A cooling effect of 21.3 and 6.9 °C for the blackbody and air inside a model house in the real environmental application is achieved. This approach provides theoretical and technical support for the new mechanochromic energy-saving windows.
Collapse
Affiliation(s)
- Fu-Xing Zhao
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mei-Hua Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zong-Ying Huang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meng-Han Zhu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian-Hao Pan
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bang Yu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu-Tao Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Guo
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi-Jian Qian
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Wen Zhang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Jing Qiu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Si-Zhe Sheng
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen He
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jin-Long Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shu-Hong Yu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Tang C. Fundamental Aspects of Stretchable Mechanochromic Materials: Fabrication and Characterization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3980. [PMID: 39203158 PMCID: PMC11355797 DOI: 10.3390/ma17163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration.
Collapse
Affiliation(s)
- Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Lee G, Choi W, Ji B, Kim M, Rho J. Timoshenko-Ehrenfest Beam-Based Reconfigurable Elastic Metasurfaces for Multifunctional Wave Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400090. [PMID: 38482735 PMCID: PMC11109653 DOI: 10.1002/advs.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Indexed: 05/23/2024]
Abstract
Herein, a Timoshenko-Ehrenfest beam-based reconfigurable elastic metasurface is introduced that can perform multifunctional wave phenomena within a single substrate, featuring high transmission in the ultrabroadband frequency range. Conventional elastic metasurfaces are typically limited to specific purposes and frequencies, thereby imposing significant constraints on their practical application. The approach involves assembly-components with various geometries on a substrate for reconfigurability, enabling to easily control and implement multifunctional wave phenomena, including anomalous-refraction, focusing, self-acceleration, and total-reflection. This is the first study on elastic metasurfaces to theoretically analyze the dispersion relation based on the Timoshenko-Ehrenfest beam theory, which considers shear deformations and rotational inertia. The analytical model is validated by demonstrating an excellent agreement with numerical and experimental results. The findings include full-wave harmonic simulations and experimentally visualized fields for measuring various wave modulations. Furthermore, the practicality of the system is verified by significantly enhancing the piezoelectric energy harvesting performance within the focusing configuration. It is believed that the reconfigurable elastic metasurface and analytical model based on the Timoshenko-Ehrenfest beam theory have vast applications such as structural health monitoring, wireless sensing, and Internet of Things.
Collapse
Affiliation(s)
- Geon Lee
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Wonjae Choi
- Intelligent Wave Engineering TeamKorea Research Institute of Standards and Science (KRISS)Daejeon34113Republic of Korea
- Department of Precision MeasurementUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Bonggyu Ji
- Intelligent Wave Engineering TeamKorea Research Institute of Standards and Science (KRISS)Daejeon34113Republic of Korea
- Korea Automotive Tuning Institute of Safety TechnologyTesting Certification Office, Korea Transportation Safety Authority (KOTSA)Gimcheon39506Republic of Korea
| | - Miso Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16519Republic of Korea
- SKKU Institute of Energy Science and Engineering (SIEST)Sungkyunkwan University (SKKU)Suwon16519Republic of Korea
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- POSCH‐POSTECH‐RIST Convergence Research Center for Flat Optics and MetaphotonicsPohang37673Republic of Korea
| |
Collapse
|
4
|
Edel JB, Ma Y, Kornyshev AA. Electrochemical photonics: a pathway towards electrovariable optical metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2717-2744. [PMID: 39635491 PMCID: PMC11501799 DOI: 10.1515/nanoph-2023-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 12/07/2024]
Abstract
This review article focuses on the latest achievements in the creation of a class of electrotuneable optical metamaterials for switchable mirrors/windows, variable colour mirrors, optical filters, and SERS sensors, based on the voltage-controlled self-assembly of plasmonic nanoparticles at liquid/liquid or solid/liquid electrochemical interfaces. Practically, these experimental systems were navigated by physical theory, the role of which was pivotal in defining the optimal conditions for their operation, but which itself was advanced in feedback with experiments. Progress and problems in the realisation of the demonstrated effects for building the corresponding devices are discussed. To put the main topic of the review in a wider perspective, the article also discusses a few other types of electrovariable metamaterials, as well as some of those that are controlled by chemistry.
Collapse
Affiliation(s)
- Joshua B. Edel
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| | - Ye Ma
- Department of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| |
Collapse
|
5
|
Karvounis A, Grange R. Electro-mechanical to optical conversion by plasmonic-ferroelectric nanostructures. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3993-4000. [PMID: 39635161 PMCID: PMC11501616 DOI: 10.1515/nanoph-2022-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/07/2024]
Abstract
Barium titanate (BaTiO3) is a lead-free ferroelectric crystal used in electro-mechanical transducers and electro-optic films. Nanomechanical devices based on thin films of BaTiO3 are still unavailable, as the internal stress of thin ferroelectric films results in brittle fracture. Here, we use the electro-mechanical force to fabricate deformable assemblies (nanobeams) of BaTiO3 nanocrystals, on top of plasmonic metasurfaces. The mechanical deformation of the nanobeams is driven by the piezoelectric response of the BaTiO3 nanocrystals. The plasmonic-ferroelectric nanostructures due to the plasmonic enhancement enable subwavelength interaction lengths and support reflection modulation up to 2.936 ± 0.008%. Their frequency response is tested across 50 kHz up to 2 MHz and is dependent on the mechanical oscillations of the deformable BaTiO3 nanobeams. The ferroelectric nanobeams support mechanical nonlinearities, which offer additional control over the electro-mechanical to optical conversion.
Collapse
Affiliation(s)
- Artemios Karvounis
- Department of Physics, Optical Nanomaterial Group, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093Zurich, Switzerland
| | - Rachel Grange
- Department of Physics, Optical Nanomaterial Group, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093Zurich, Switzerland
| |
Collapse
|
6
|
Liu T, Ou JY, Papasimakis N, MacDonald KF, Gusev VE, Zheludev NI. Ballistic dynamics of flexural thermal movements in a nanomembrane revealed with subatomic resolution. SCIENCE ADVANCES 2022; 8:eabn8007. [PMID: 35984884 PMCID: PMC9390981 DOI: 10.1126/sciadv.abn8007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/07/2022] [Indexed: 05/26/2023]
Abstract
Flexural oscillations of freestanding films, nanomembranes, and nanowires are attracting growing attention for their importance to the fundamental physical and optical properties and device applications of two-dimensional and nanostructured (meta)materials. Here, we report on the observation of short-time scale ballistic motion in the flexural mode of a nanomembrane cantilever, driven by thermal fluctuation of flexural phonons, including measurements of ballistic velocities and displacements performed with subatomic resolution, using a free electron edge-scattering technique. Within intervals <10 μs, the membrane moves ballistically at a constant velocity, typically ~300 μm/s, while Brownian-like dynamics emerge for longer observation periods. Access to the ballistic regime provides verification of the equipartition theorem and Maxwell-Boltzmann statistics for flexural modes and can be used in fast thermometry and mass sensing during atomic absorption/desorption processes on the membrane.
Collapse
Affiliation(s)
- Tongjun Liu
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton Highfield, Southampton SO17 1BJ, UK
| | - Jun-Yu Ou
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton Highfield, Southampton SO17 1BJ, UK
| | - Nikitas Papasimakis
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton Highfield, Southampton SO17 1BJ, UK
| | - Kevin F. MacDonald
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton Highfield, Southampton SO17 1BJ, UK
| | - Vitalyi E. Gusev
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), Institut d’Acoustique-Graduate School (IA-GS), CNRS, Le Mans Université, 72085 Le Mans, France
| | - Nikolay I. Zheludev
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton Highfield, Southampton SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies and The Photonics Institute, SPMS, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
7
|
Lin HT, Hsu YY, Cheng PJ, Wang WT, Chang SW, Shih MH. In situ tunable circular dichroism of flexible chiral metasurfaces composed of plasmonic nanorod trimers. NANOSCALE ADVANCES 2022; 4:2428-2434. [PMID: 36134130 PMCID: PMC9418018 DOI: 10.1039/d2na00144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 06/16/2023]
Abstract
The circularly polarized light source is one of the keys to chiral photonic circuits and systems. However, it is difficult to integrate conventional light-emitting devices with circular polarization converters directly into compact chip-scale photonic systems partly because of their bulky structures. In this study, in situ optical chirality tunable nanorod trimer metasurfaces consisting of two types of nanorod dimers are demonstrated and integrated with a flexible polydimethylsiloxane (PDMS) substrate. The optical chirality variations originating from the tunable asymmetricity of nanorod trimers under different stretching scenarios are evaluated. Through the processes, the gap distances between nanorods are varied, and the degree of circular polarization of the transmitted wave is controlled through the manipulation of localized surface plasmon resonance (LSPR) coupling. The results reveal the circular dichroism tunability and durability of fabricated chiral metasurfaces which can be important elements for chip-scale flexible optoelectronic integrated circuits for sensing, display and communication applications.
Collapse
Affiliation(s)
- Hsiang-Ting Lin
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yao-Yu Hsu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Pi-Ju Cheng
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Wei-Ting Wang
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Shu-Wei Chang
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Department of Photonics, National Sun Yat-sen University Kaohsiung 80424 Taiwan
| |
Collapse
|
8
|
Yang J, Gurung S, Bej S, Ni P, Howard Lee HW. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:036101. [PMID: 35244609 DOI: 10.1088/1361-6633/ac2aaf] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Optical metasurfaces with subwavelength thickness hold considerable promise for future advances in fundamental optics and novel optical applications due to their unprecedented ability to control the phase, amplitude, and polarization of transmitted, reflected, and diffracted light. Introducing active functionalities to optical metasurfaces is an essential step to the development of next-generation flat optical components and devices. During the last few years, many attempts have been made to develop tunable optical metasurfaces with dynamic control of optical properties (e.g., amplitude, phase, polarization, spatial/spectral/temporal responses) and early-stage device functions (e.g., beam steering, tunable focusing, tunable color filters/absorber, dynamic hologram, etc) based on a variety of novel active materials and tunable mechanisms. These recently-developed active metasurfaces show significant promise for practical applications, but significant challenges still remain. In this review, a comprehensive overview of recently-reported tunable metasurfaces is provided which focuses on the ten major tunable metasurface mechanisms. For each type of mechanism, the performance metrics on the reported tunable metasurface are outlined, and the capabilities/limitations of each mechanism and its potential for various photonic applications are compared and summarized. This review concludes with discussion of several prospective applications, emerging technologies, and research directions based on the use of tunable optical metasurfaces. We anticipate significant new advances when the tunable mechanisms are further developed in the coming years.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Sudip Gurung
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Subhajit Bej
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Peinan Ni
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Ho Wai Howard Lee
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| |
Collapse
|
9
|
Liu T, Ou JY, MacDonald KF, Zheludev NI. Detection of sub-atomic movement in nanostructures. NANOSCALE ADVANCES 2021; 3:2213-2216. [PMID: 36133771 PMCID: PMC9419005 DOI: 10.1039/d0na01068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 06/16/2023]
Abstract
Nanoscale objects move fast and oscillate billions of times per second. Such movements occur naturally in the form of thermal (Brownian) motion while stimulated movements underpin the functionality of nano-mechanical sensors and active nano-(electro/opto) mechanical devices. Here we introduce a methodology for detecting such movements, based on the spectral analysis of secondary electron emission from moving nanostructures, that is sensitive to displacements of sub-atomic amplitude. We demonstrate the detection of nanowire Brownian oscillations of ∼10 pm amplitude and hyperspectral mapping of stimulated oscillations of setae on the body of a common flea. The technique opens a range of opportunities for the study of dynamic processes in materials science, nanotechnology and biology.
Collapse
Affiliation(s)
- Tongjun Liu
- Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton SO17 1BJ UK
| | - Jun-Yu Ou
- Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton SO17 1BJ UK
| | - Kevin F MacDonald
- Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton SO17 1BJ UK
| | - Nikolay I Zheludev
- Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton SO17 1BJ UK
- Centre for Disruptive Photonic Technologies & the Photonics Institute, Nanyanag Technological University 637371 Singapore
| |
Collapse
|
10
|
Liu X, Wei X, Miao Y, Tao P, Wang H, Xu B. Triphenylamine-based small molecules with aggregation-induced emission and mechanochromic luminescence properties for OLED application. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Ahmed R, Butt H. Strain-Multiplex Metalens Array for Tunable Focusing and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003394. [PMID: 33643805 PMCID: PMC7887606 DOI: 10.1002/advs.202003394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/08/2023]
Abstract
Metalenses on a flexible template are engineered metal-dielectric interfaces that improve conventional imaging system and offer dynamic focusing and zooming capabilities by controlling the focal length and bandwidth through a mechanical or external stretch. However, realizing large-scale and cost-effective flexible metalenses with high yields in a strain-multiplex fashion remains as a great challenge. Here, single-pulsed, maskless light interference and imprinting technique is utilized to fabricate reconfigurable, flexible metalenses on a large-scale and demonstrate its strain-multiplex tunable focusing. Experiments, in accordance with the theory, show that applied stretch on the flexible-template reconfigurable diffractive metalenses (FDMLs) accurately mapped focused wavefront, bandwidth, and focal length. The surface relief metastructures consisted of metal-coated hemispherical cavities in a hexagonal close-packed arrangement to enhance tunable focal length, numerical aperture, and fill factor, FF ≈ 100% through normal and angular light illumination with external stretch. The strain-multiplex of FDMLs approach lays the foundation of a new class of large-scale, cost-effective metalens offering tunable light focusing and imaging.
Collapse
Affiliation(s)
- Rajib Ahmed
- School of EngineeringUniversity of BirminghamBirminghamB15 2TTUK
- Stanford School of MedicinePalo AltoCA94304United States
| | - Haider Butt
- Department of Mechanical EngineeringKhalifa UniversityAbu DhabiP.O. 127788UAE
| |
Collapse
|
12
|
Phenomenon of Electromagnetic Field Resonance in Metal and Dielectric Gratings and Its Possible Practical Applications. CONDENSED MATTER 2020. [DOI: 10.3390/condmat5030049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calculations of the field distribution in the structure of the dielectric substrate/buffer layer/volume phase grating/analyzed medium were performed. It is shown that in the presence of a buffer layer with a low refractive index in the dielectric waveguide leads to a shift of the maximum field at the waveguide resonance into analyzed medium. As a result, the spectral and angular sensitivity of the corresponding sensor increases. Based on the waveguide equation, analytical expressions are obtained that connect the spectral and angular sensitivity of the sensor to the sensitivity of the propagation constant change due to the refractive index change of the analyzed medium. The conditions for the excitation of the resonance of surface plasmon–polariton waves in the structure with a metal or dielectric grating on a metal substrate are also given. The fields that occur at resonance for silver and gold gratings are calculated.
Collapse
|
13
|
SiNW/C@Pt Arrays for High-Efficiency Counter Electrodes in Dye-Sensitized Solar Cells. ENERGIES 2019. [DOI: 10.3390/en13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modern energy needs and the pressing issue of environmental sustainability have driven many research groups to focus on energy-generation devices made from novel nanomaterials. We have prepared platinum nanoparticle-decorated silicon nanowire/carbon core–shell nanomaterials (SiNW/C@Pt). The processing steps are relatively simple, including wet chemical etching to form the silicon nanowires (SiNWs), chemical vapor deposition to form the carbon shell, and drop-casting and thermal treatment to embed platinum nanoparticles (Pt NPs). This nanomaterial was then tested as the counter electrode (CE) in dye-sensitized solar cells (DSSCs). SiNW/C@Pt shows potential as a good electrocatalyst based on material characterization data from Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectroscopy shows that the surface reactivity of the SiNW/C is increased by the decoration of Pt NPs. These data also show that the carbon shell included both graphitic (sp 2 hybridization) and defective (sp 3 hybridization) phases of carbon. We achieved the minimum charge-transfer resistance of 0.025 Ω · cm 2 and the maximum efficiency of 9.46% with a symmetric dummy cell and DSSC device fabricated from the SiNW/C@Pt CEs, respectively.
Collapse
|