1
|
Wang C, Du Y, Zhao Y, He Z, Wang S, Zhang Y, Jiang Y, Du Y, Wu J, Jiang Z, Liu M. Solar-Powered Switch of Antiferromagnetism/Ferromagnetism in Flexible Spintronics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3158. [PMID: 38133055 PMCID: PMC10745959 DOI: 10.3390/nano13243158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The flexible electronics have application prospects in many fields, including as wearable devices and in structural detection. Spintronics possess the merits of a fast response and high integration density, opening up possibilities for various applications. However, the integration of miniaturization on flexible substrates is impeded inevitably due to the high Joule heat from high current density (1012 A/m2). In this study, a prototype flexible spintronic with device antiferromagnetic/ferromagnetic heterojunctions is proposed. The interlayer coupling strength can be obviously altered by sunlight soaking via direct photo-induced electron doping. With the assistance of a small magnetic field (±125 Oe), the almost 180° flip of magnetization is realized. Furthermore, the magnetoresistance changes (15~29%) of flexible spintronics on fingers receiving light illumination are achieved successfully, exhibiting the wearable application potential. Our findings develop flexible spintronic sensors, expanding the vision for the novel generation of photovoltaic/spintronic devices.
Collapse
Affiliation(s)
- Chenying Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Yujing Du
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Yifan Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Zhexi He
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Song Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (Y.Z.); (Z.J.)
| | - Yaxin Zhang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (Y.Z.); (Z.J.)
| | - Yuxuan Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Yongjun Du
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Jingen Wu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (Y.Z.); (Z.J.)
| | - Ming Liu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| |
Collapse
|
2
|
Zhao M, Zhao Y, Li Y, Dong G, He Z, Du Y, Jiang Y, Wu S, Wang C, Zhao L, Jiang Z, Liu M, Zhou Z. Manipulations of Spin Waves by Photoelectrons in Ferromagnetic/Non-Ferromagnetic Alloyed Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303810. [PMID: 37401913 DOI: 10.1002/adma.202303810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Spin waves are considered to be an alternative carrier with great promise for information sensing. The feasible excitation and low-power manipulation of spin waves still remain a challenge. In this regard, natural light enablings spin-wave tunability in Co60 Al40 -alloyed film is investigated. A reversible shift of the critical angle (from 81° in the dark to 83° under illumination) of the body spin-wave is achieved successfully Meanwhile, an eye-catching shift (817 Oe) of the ferromagnetic resonance (FMR) field is obtained optically, leading to changes in magnetic anisotropy. Based on the modified Puszkarski's surface inhomogeneity model, the control of spin-wave resonance (SWR) by sunlight can be understood by an effective photoelectron-doping-induced change of the surface magnetic anisotropy. Furthermore, the body spin wave is modulated stably with natural light illumination, confirming a non-volatile, reversible switching behavior. This work has both practical and theoretical importance for developing future sunlight-tunable magnonics/spintronics devices.
Collapse
Affiliation(s)
- Meng Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yifan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaojin Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guohua Dong
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhexi He
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yujing Du
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuxuan Jiang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Chenying Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, Jiaotong University, Xi'an, 710049, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Zhao M, Wang L, Zhao Y, Du Y, He Z, Chen K, Luo Z, Yan W, Li Q, Wang C, Jiang Z, Liu M, Zhou Z. Deterministic Magnetic Switching in Perpendicular Magnetic Trilayers Through Sunlight-Induced Photoelectron Injection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301955. [PMID: 36970816 DOI: 10.1002/smll.202301955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Finding an energy-efficient way of switching magnetization is crucial in spintronic devices, such as memories. Usually, spins are manipulated by spin-polarized currents or voltages in various ferromagnetic heterostructures; however, their energy consumption is relatively large. Here, a sunlight control of perpendicular magnetic anisotropy (PMA) in Pt (0.8 nm)/Co (0.65 nm)/Pt (2.5 nm)/PN Si heterojunction in an energy-efficient manner is proposed. The coercive field (HC ) is altered from 261 to 95 Oe (64% variation) under sunlight illumination, enabling a nearly 180° deterministic magnetization switching reversibly with a 140 Oe magnetic bias assistant. The element-resolved X-ray circular dichroism measurement reveals different L3 and L2 edge signals of the Co layer with or without sunlight, suggesting a photoelectron-induced redistribution of the orbital and spin moment in Co magnetization. The first-principle calculations also reveal that the photo-induced electrons shift the Fermi level of electrons and enhance the in-plane Rashba field around the Co/Pt interfaces, leading to a weakened PMA and corresponding HC decreasing and magnetization switching accordingly. The sunlight control of PMA may provide an alternative way for magnetic recording, which is energy efficient and would reduce the Joule heat from the high switching current.
Collapse
Affiliation(s)
- Meng Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Wang
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Yifan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yujing Du
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhexi He
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Qian Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Chenying Wang
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Gogoi L, Gao W, Ajayan PM, Deb P. Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials. Phys Chem Chem Phys 2023; 25:1430-1456. [PMID: 36601788 DOI: 10.1039/d2cp05228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Investigating magnetic phenomena at the microscopic level has emerged as an indispensable research domain in the field of low-dimensional magnetic materials. Understanding quantum phenomena that mediate the magnetic interactions in dimensionally confined materials is crucial from the perspective of designing cheaper, compact, and energy-efficient next-generation spintronic devices. The infrequent occurrence of intrinsic long-range magnetic order in dimensionally confined materials hinders the advancement of this domain. Hence, introducing and controlling the ferromagnetic character in two-dimensional materials is important for further prospective studies. The interface in a heterostructure significantly contributes to modulating its collective magnetic properties. Quantum phenomena occurring at the interface of engineered heterostructures can enhance or suppress magnetization of the system and introduce magnetic character to a native non-magnetic system. Considering most 2D magnetic materials are used as stacks with other materials in nanoscale devices, the methods to control the magnetism in a heterostructure and understanding the corresponding mechanism are crucial for promising spintronic and other functional applications. This review highlights the effect of electric polarization of the adjacent layer, changed structural configuration at the vicinity of the interface, natural strain induced by lattice mismatch, and exchange interaction in the interfacial region in modulating the magnetism of heterostructures of van der Waals and non-van der Waals materials. Further, prospects of interface-engineered magnetism in spin-dependent device applications are also discussed.
Collapse
Affiliation(s)
- Liyenda Gogoi
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pulickel M Ajayan
- Benjamin M. and Mary Greenwood Anderson Professor of Engineering, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | - Pritam Deb
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| |
Collapse
|
5
|
Zhao Y, Zhao M, Tian B, Jiang Z, Wang Y, Liu M, Zhou Z. Enhancing Sunlight Control of Interfacial Magnetism by Introducing the ZnO Layer for Electron Harvesting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2018-2024. [PMID: 33351600 DOI: 10.1021/acsami.0c19367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, researchers have developed photovoltaic (PV) control of magnetism to provide a new way of manipulating spin states in an energy-effective manner, where the capability of magnetism manipulation is crucial. Here, we established a PV heterostructure of Pt/PV/ZnO/Co/Si to realize sunlight control of magnetism, where the ZnO layer is introduced to enhance the electron transportation as well as the interfacial optical-electromagnetic tunability. Compared to the PV heterostructure without the ZnO layer (245 Oe), a much greater ferromagnetic resonance shift (1149 Oe) and a saturated magnetization reduction (12.7%) were obtained with the optimal ZnO inserting layer under sunlight illumination. These results prove that the ZnO layer plays a key role in optimizing magnetic manipulation and opening a door toward PV spintronics in the future.
Collapse
Affiliation(s)
- Yifan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, and State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, and State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, and State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, and State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Zhao Y, Zhao S, Wang L, Wang S, Du Y, Zhao Y, Jin S, Min T, Tian B, Jiang Z, Zhou Z, Liu M. Photovoltaic modulation of ferromagnetism within a FM metal/P-N junction Si heterostructure. NANOSCALE 2021; 13:272-279. [PMID: 33332513 DOI: 10.1039/d0nr07911a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obtaining small, fast, and energy-efficient spintronic devices requires a new way of manipulating spin states in an effective manner. Here, a prototype photovoltaic spintronic device with a p-n junction Si wafer is proposed which generates photo-induced electrons and changes the ferromagnetism by interfacial charge doping. A ferromagnetic resonance field change of 48.965 mT and 11.306 mT is achieved in Co and CoFeB thin films under sunlight illumination, respectively. The transient reflection (TR) analysis and the first principles calculation reveal the photovoltaic electrons that are doped into the magnetic layer and alter its Fermi level, correspondingly. This finding provides a new method of magnetism modulation and demonstrates a solar-driven spintronic device with abundant energy supply, which may further expand the landscape of spintronics research.
Collapse
Affiliation(s)
- Yifan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, and State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao S, Zhao Y, Tian B, Liu J, Jin S, Jiang Z, Zhou Z, Liu M. Photovoltaic Control of Ferromagnetism for Flexible Spintronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41999-42006. [PMID: 32840102 DOI: 10.1021/acsami.0c11954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The demand for low-power flexible spintronics for sensing, communicating, and data processing applications boosts an intense search for novel ways of controlling magnetism. In this work, a photovoltaic controllable flexible spintronic device within a Kapton/Ta/Co/(PC71BM/PTB7-Th)/Pt heterostructure was demonstrated, and the magnetic anisotropy change of this flexible heterostructure as a function of the external light radiation and strain was quantitatively determined. 150 mW/cm2 white light illumination induced 489 Oe out-of-plane ferromagnetic resonance field modulation, which was attributed to the photogenerated electron doping in the cobalt film. The chemical contamination effect and the interfacial oxidation effect during the photovoltaic doping process were eliminated. Moreover, it was found that the working function of the thin-film electrodes were different from the bulk values via an ultraviolet photoelectron spectroscopy test. Our results on flexible photovoltaic spintronics systems will invigorate the research toward the development of solar-driven energy-efficient spintronics.
Collapse
Affiliation(s)
- Shishun Zhao
- Ministry Education Key Laboratory of Electronic Materials Research Laboratory, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi 'an Jiaotong University, Xi'an 710049, China
| | - Yifan Zhao
- Ministry Education Key Laboratory of Electronic Materials Research Laboratory, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi 'an Jiaotong University, Xi'an 710049, China
| | - Bian Tian
- State Key Laboratory for Mechanical Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junxue Liu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, China
| | - Zhuangde Jiang
- State Key Laboratory for Mechanical Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziyao Zhou
- Ministry Education Key Laboratory of Electronic Materials Research Laboratory, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi 'an Jiaotong University, Xi'an 710049, China
| | - Ming Liu
- Ministry Education Key Laboratory of Electronic Materials Research Laboratory, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi 'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|