1
|
Xiao Z, Zou Y, Chen Z, Miao J, Qiu Y, Huang Z, Cao X, Peng X, Yang C. Deep-Blue OLEDs with BT. 2020 Blue Gamut, External Quantum Efficiency Approaching 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419601. [PMID: 39935145 DOI: 10.1002/adma.202419601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The hyperfluorescence (HF) technology holds great promise for the development of high-quality organic light-emitting diodes (OLEDs) for their excellent color purity, high efficiency, and low-efficiency roll-off. Sensitizer plays a crucial role in the performance of HF devices. However, designing sensitizers with simultaneous high photoluminescence quantum yield (PLQY), rapid radiative decay (kr), and fast reverse intersystem crossing rate (kRISC) poses a great challenge, particularly for the thermally activated delayed fluorescence (TADF) sensitizers targeting deep-blue HF device. Herein, by introducing a boron-containing multi-resonance-type acceptor into the multi-tert-butyl-carbazole encapsulated benzene molecular skeleton, two TADF emitters featuring hybridized multi-channel charge-transfer pathways, including short-range multi-resonance, weakened through-bond, and compact face-to-face through-space charge-transfer. Benefiting from the rational molecular design, the proof-of-concept sensitizers exhibit simultaneous rapid kr of 5.3 × 107 s-1, fast kRISC up to 5.9 × 105 s-1, a PQLY of near-unity, as well as ideal deep-blue emission in both solution and film. Consequently, the corresponding deep-blue HF devices not only achieve chromaticity coordinates that fully comply with the latest BT. 2020 standards, but also showcase record-high maximum external quantum efficiencies nearing 40%, along with suppressed efficiency roll-off.
Collapse
Affiliation(s)
- Zhengqi Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuntao Qiu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
Wu SJ, Fu XF, Zhang DH, Sun YF, Lu X, Lin FL, Meng L, Chen XL, Lu CZ. Thermally Activated Delayed Fluorescence with Nanosecond Emission Lifetimes and Minor Concentration Quenching: Achieving High-Performance Nondoped and Doped Blue OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401724. [PMID: 38575151 DOI: 10.1002/adma.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Simultaneously achieving a high photoluminescence quantum yield (PLQY), ultrashort exciton lifetime, and suppressed concentration quenching in thermally activated delayed fluorescence (TADF) materials is desirable yet challenging. Here, a novel acceptor-donor-acceptor type TADF emitter, namely, 2BO-sQA, wherein two oxygen-bridged triarylboron (BO) acceptors are arranged with cofacial alignment and positioned nearly orthogonal to the rigid dispirofluorene-quinolinoacridine (sQA) donor is reported. This molecular design enables the compound to achieve highly efficient (PLQYs up to 99%) and short-lived (nanosecond-scale) blue TADF with effectively suppressed concentration quenching in films. Consequently, the doped organic light-emitting diodes (OLEDs) base on 2BO-sQA achieve exceptional electroluminescence performance across a broad range of doping concentrations, maintaining maximum external quantum efficiencies (EQEs) at over 30% for doping concentrations ranging from 10 to 70 wt%. Remarkably, the nondoped blue OLED achieves a record-high maximum EQE of 26.6% with a small efficiency roll-off of 14.0% at 1000 candelas per square meter. By using 2BO-sQA as the sensitizer for the multiresonance TADF emitter ν-DABNA, TADF-sensitized fluorescence OLEDs achieve high-efficiency deep-blue emission. These results demonstrate the feasibility of this molecular design in developing TADF emitters with high efficiency, ultrashort exciton lifetime, and minimal concentration quenching.
Collapse
Affiliation(s)
- Shao-Jie Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xi-Feng Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Dong-Hai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Yu-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Xin Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Fu-Lin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
4
|
Zhao W, Tan K, Guo W, Guo C, Li M, Chen C. Acceptor Copolymerized Axially Chiral Conjugated Polymers with TADF Properties for Efficient Circularly Polarized Electroluminescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309031. [PMID: 38553794 PMCID: PMC11186117 DOI: 10.1002/advs.202309031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Indexed: 06/20/2024]
Abstract
Chiral conjugated polymer has promoted the development of the efficient circularly polarized electroluminescence (CPEL) device, nevertheless, it remains a challenge to develop chiral polymers with high electroluminescence performance. Herein, by the acceptor copolymerization of axially chiral biphenyl emitting skeleton and benzophenone, a pair of axially chiral conjugated polymers namely R-PAC and S-PAC are synthesized. The target polymers exhibit obvious thermally activated delayed fluorescence (TADF) activities with high photoluminescence quantum yields of 81%. Moreover, the chiral polymers display significant circularly polarized luminescence features, with luminescence dissymmetry factor (|glum|) of nearly 3 × 10-3. By using the chiral polymers as emitters, the corresponding circularly polarized organic light-emitting diodes (CP-OLEDs) exhibit efficient CPEL signals with electroluminescence dissymmetry factor |gEL| of 3.4 × 10-3 and high maximum external quantum efficiency (EQEmax) of 17.8%. Notably, considering both EQEmax and |gEL| comprehensively, the device performance of R-PAC and S-PAC is the best among all the reported CP-OLEDs with chiral conjugated polymers as emitters. This work provides a facile approach to constructing chiral conjugated TADF polymers and discloses the potential of axially chiral conjugated luminescent skeletons in architecting high-performance CP-OLEDs.
Collapse
Affiliation(s)
- Wen‐Long Zhao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ke‐Ke Tan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei‐Chen Guo
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chen‐Hao Guo
- College of Chemistry and Chemical EngineeringShanxi UniversityTaiyuan030006China
| | - Meng Li
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chuan‐Feng Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Tan X, Dou D, Chua LL, Png RQ, Congrave DG, Bronstein H, Baumgarten M, Li Y, Blom PWM, Wetzelaer GJAH. Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport. Nat Commun 2024; 15:4107. [PMID: 38750042 PMCID: PMC11096390 DOI: 10.1038/s41467-024-48553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
Many wide-gap organic semiconductors exhibit imbalanced electron and hole transport, therefore efficient organic light-emitting diodes require a multilayer architecture of electron- and hole-transport materials to confine charge recombination to the emissive layer. Here, we show that even for emitters with imbalanced charge transport, it is possible to obtain highly efficient single-layer organic light emitting diodes (OLEDs), without the need for additional charge-transport and blocking layers. For hole-dominated emitters, an inverted single-layer device architecture with ohmic bottom-electron and top-hole contacts moves the emission zone away from the metal top electrode, thereby more than doubling the optical outcoupling efficiency. Finally, a blue-emitting inverted single-layer OLED based on thermally activated delayed fluorescence is achieved, exhibiting a high external quantum efficiency of 19% with little roll-off at high brightness, demonstrating that balanced charge transport is not a prerequisite for highly efficient single-layer OLEDs.
Collapse
Affiliation(s)
- Xiao Tan
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dehai Dou
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Lay-Lay Chua
- Department of Physics, National University of Singapore, Singapore, Singapore
- National University of Singapore, Department of Chemistry, Singapore, Singapore
| | - Rui-Qi Png
- Department of Physics, National University of Singapore, Singapore, Singapore
| | | | - Hugo Bronstein
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Yungui Li
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | |
Collapse
|
6
|
Luo X, Jin Q, Du M, Wang D, Duan L, Zhang Y. An Ideal Molecular Construction Strategy for Ultra-Narrow-Band Deep-Blue Emitters: Balancing Bathochromic-Shift Emission, Spectral Narrowing, and Aggregation Suppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307675. [PMID: 38161235 PMCID: PMC10953554 DOI: 10.1002/advs.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Narrowband emissive multiple resonance (MR) emitters promise high efficiency and stability in deep-blue organic light-emitting diodes (OLEDs). However, the construction of ideal ultra-narrow-band deep-blue MR emitters still faces formidable challenges, especially in balancing bathochromic-shift emission, spectral narrowing, and aggregation suppression. Here, DICz is chosen, which possesses the smallest full-width-at-half-maximum (FWHM) in MR structures, as the core and solved the above issue by tuning its peripheral substitution sites. The 1-substituted molecule Cz-DICz is able to show a bright deep-blue emission with a peak at 457 nm, an extremely small FWHM of 14 nm, and a CIE coordinate of (0.14, 0.08) in solution. The corresponding OLEDs exhibit high maximum external quantum efficiencies of 22.1%-25.6% and identical small FWHMs of 18 nm over the practical mass-production concentration range (1-4 wt.%). To the best of the knowledge, 14 and 18 nm are currently the smallest FWHM values for deep-blue MR emitters with similar emission maxima under photoluminescence and electroluminescence conditions, respectively. These discoveries will help drive the development of high-performance narrowband deep-blue emitters and bring about a revolution in OLED industry.
Collapse
Affiliation(s)
- Xiaofeng Luo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Qian Jin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Dong Wang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijing100084P. R. China
- Applied Mechanics LabSchool of Aerospace EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
7
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Xie FM, Li HZ, Zhang K, Wang HY, Li YQ, Tang JX. Rational Multidimensional Shielded Multiple Resonance Emitter Suppresses Concentration Quenching and Spectral Broadening for Solution-Processed Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39669-39676. [PMID: 37579002 DOI: 10.1021/acsami.3c07852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters based on multiple resonance (MR) effects are promising for high-definition organic light-emitting diodes (OLEDs) with narrowband emission and high efficiency. However, they still face the challenges of aggregation-caused quenching (ACQ) and spectral broadening. Solution-processable MR-TADF emitters with an external quantum efficiency (EQE) of >20% and a full width at half-maximum (fwhm) of <30 nm have rarely been reported. To construct ACQ-resistant emitters without sacrificing color purity, the aggregation-induced MR-TADF material 6TBN with a rigid B,N-containing polycyclic aromatic hydrocarbon core and four carbazole substituents as well as 12 tert-butyl groups on the periphery is designed. The multidimensional shielded effect largely limits the ACQ, intermolecular interactions, and spectral broadening. Consequently, solution-processed OLEDs based on 6TBN exhibit a maximum EQE of 23.0% and high color purity with a fwhm of 25 nm. Furthermore, the nondoped device achieves a high efficiency (12.3%) and merely a slight widening of the fwhm to 27 nm. This work provides a feasible strategy to achieve MR-TADF materials with resistance to concentration quenching and high color purity.
Collapse
Affiliation(s)
- Feng-Ming Xie
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Hao-Ze Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Han-Yang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
9
|
Fu Y, Liu H, Tang BZ, Zhao Z. Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4. Nat Commun 2023; 14:2019. [PMID: 37037820 PMCID: PMC10086064 DOI: 10.1038/s41467-023-37687-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
As promising luminescent materials for organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence materials are booming vigorously in recent years, but robust blue ones still remain challenging. Herein, we report three highly efficient blue and deep-blue delayed fluorescence materials comprised of a weak electron acceptor chromeno[3,2-c]carbazol-8(5H)-one with a rigid polycyclic structure and a weak electron donor spiro[acridine-9,9'-xanthene]. They hold distinguished merits of excellent photoluminescence quantum yields (99%), ultrahigh horizontal transition dipole ratios (93.6%), and fast radiative transition and reverse intersystem crossing, which furnish superb blue and deep-blue electroluminescence with Commission Internationale de I'Eclairage coordinates (CIEx,y) of (0.14, 0.18) and (0.14, 0.15) and record-beating external quantum efficiencies (ηexts) of 43.4% and 41.3%, respectively. Their efficiency roll-offs are successfully reduced by suppressing triplet-triplet and singlet-singlet annihilations. Moreover, high-performance deep-blue and green hyperfluorescence OLEDs are achieved by utilizing these materials as sensitizers for multi-resonance delayed fluorescence dopants, providing state-of-the-art ηexts of 32.5% (CIEx,y = 0.14, 0.10) and 37.6% (CIEx,y = 0.32, 0.64), respectively, as well as greatly advanced operational lifetimes. These splendid results can surely inspire the development of blue and deep-blue luminescent materials and devices.
Collapse
Affiliation(s)
- Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Xia Y, Li J, Chen X, Li A, Guo K, Chen F, Zhao B, Chen Z, Wang H. Molecular Engineering of Push-Pull Diphenylsulfone Derivatives towards Aggregation-Induced Narrowband Deep Blue Thermally Activated Delayed Fluorescence (TADF) Emitters. Chemistry 2022; 28:e202202434. [PMID: 36168993 DOI: 10.1002/chem.202202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/29/2022]
Abstract
Narrowband deep blue thermally activated delayed fluorescent (TADF) materials have attracted significant attention. Herein, four asymmetrical structured TADF emitters based on diphenylsulfone (DPS) acceptor and 9,9-dimethyl-9,10-dihydroacridine (DMAC) donor with progressive performances were developed. The tert-butyloxy auxiliary electron-donor was adopted to restrict the intramolecular rotations and provide efficient steric hindrance. Regioisomerization by altering the substitution position of DMAC on DPS unit further enhanced the intra- and inter-molecular interactions. The accompanying effects yielded increased energy level, minimized reorganization energy, and inhibited non-radiative transitions in the crystals of tBuO-SOmAD, which achieved narrowband deep-blue emission peaking at 424 nm (FWHM=64 nm, ΦF =33.6 %) through aggregation-induced, blue-shifted emission (AIBSE). In addition, deep-blue organic light emitting diodes (OLEDs) based on tBuO-SOmAD realized the electroluminescence (EL) spectrum peaking located at 435 nm and CIE coordination of (0.12, 0.09).
Collapse
Affiliation(s)
- Yan Xia
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jie Li
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xu Chen
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Anran Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Kunpeng Guo
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Fei Chen
- Ningbo Institute of NPU, Northwestern Polytechnical University, Ningbo, 315000, P. R. China
| | - Bo Zhao
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhikuan Chen
- Ningbo Institute of NPU, Northwestern Polytechnical University, Ningbo, 315000, P. R. China
| | - Hua Wang
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.,College of Textile Engineering, Taiyuan University of Technology, Jin Zhong, 030600, P. R. China
| |
Collapse
|
11
|
Cai X, Xue J, Li C, Liang B, Ying A, Tan Y, Gong S, Wang Y. Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron-Oxygen-Nitrogen Embedded Polycyclic Aromatic System. Angew Chem Int Ed Engl 2022; 61:e202200337. [PMID: 35302704 DOI: 10.1002/anie.202200337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.
Collapse
Affiliation(s)
- Xinliang Cai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Baoyan Liang
- Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province, P. R. China
| | - Ao Ying
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Tan
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Qiu T, Akinoglu EM, Luo B, Konarova M, Yun JH, Gentle IR, Wang L. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103842. [PMID: 35119141 DOI: 10.1002/adma.202103842] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Transparent conductive films (TCFs) are irreplaceable components in most optoelectronic applications such as solar cells, organic light-emitting diodes, sensors, smart windows, and bioelectronics. The shortcomings of existing traditional transparent conductors demand the development of new material systems that are both transparent and electrically conductive, with variable functionality to meet the requirements of new generation optoelectronic devices. In this respect, TCFs with periodic or irregular nanomesh structures have recently emerged as promising candidates, which possess superior mechanical properties in comparison with conventional metal oxide TCFs. Among the methods for nanomesh TCFs fabrication, nanosphere lithography (NSL) has proven to be a versatile platform, with which a wide range of morphologically distinct nanomesh TCFs have been demonstrated. These materials are not only functionally diverse, but also have advantages in terms of device compatibility. This review provides a comprehensive description of the NSL process and its most relevant derivatives to fabricate nanomesh TCFs. The structure-property relationships of these materials are elaborated and an overview of their application in different technologies across disciplines related to optoelectronics is given. It is concluded with a perspective on current shortcomings and future directions to further advance the field.
Collapse
Affiliation(s)
- Tengfei Qiu
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong, 526238, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Muxina Konarova
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
13
|
Shi YZ, Wu H, Wang K, Yu J, Ou XM, Zhang XH. Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Chem Sci 2022; 13:3625-3651. [PMID: 35432901 PMCID: PMC8966661 DOI: 10.1039/d1sc07180g] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nondoped organic light-emitting diodes (OLEDs) have drawn immense attention due to their merits of process simplicity, reduced fabrication cost, etc. To realize high-performance nondoped OLEDs, all electrogenerated excitons should be fully utilized. The thermally activated delayed fluorescence (TADF) mechanism can theoretically realize 100% internal quantum efficiency (IQE) through an effective upconversion process from nonradiative triplet excitons to radiative singlet ones. Nevertheless, exciton quenching, especially related to triplet excitons, is generally very serious in TADF-based nondoped OLEDs, significantly hindering the pace of development. Enormous efforts have been devoted to alleviating the annoying exciton quenching process, and a number of TADF materials for highly efficient nondoped devices have been reported. In this review, we mainly discuss the mechanism, exciton leaking channels, and reported molecular design strategies of TADF emitters for nondoped devices. We further classify their molecular structures depending on the functional A groups and offer an outlook on their future prospects. It is anticipated that this review can entice researchers to recognize the importance of TADF-based nondoped OLEDs and provide a possible guide for their future development.
Collapse
Affiliation(s)
- Yi-Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Xue-Mei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| |
Collapse
|
14
|
Han J, Huang Z, Miao J, Qiu Y, Xie Z, Yang C. Narrowband blue emission with insensitivity to the doping concentration from an oxygen-bridged triarylboron-based TADF emitter: nondoped OLEDs with a high external quantum efficiency up to 21.4. Chem Sci 2022; 13:3402-3408. [PMID: 35432872 PMCID: PMC8943898 DOI: 10.1039/d2sc00329e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve narrowband emission and high efficiency in nondoped organic light-emitting diodes (OLEDs) remain a big challenge. Herein, we successfully design and synthesize two blue TADF emitters by directly incorporating carbazole fragments into an oxygen-bridged triarylboron acceptor. Depending on the linking mode, the two emitters show significantly different photophysical properties. Benefitting from the bulky steric hindrance between the acceptor and terminal pendants, the blue emitter TDBA-Cz exhibited a high photoluminescence quantum yield (PLQY) of 88% in neat films and narrowband emission. The corresponding non-doped blue device exhibited a maximum external quantum efficiency (EQE) of 21.4%, with a full width at half maximum (FWHM) of only 45 nm. This compound is the first blue TADF emitter that can concurrently achieve narrow bandwidth and high electroluminescence (EL) efficiency in nondoped blue TADF-OLEDs. A donor–acceptor TADF emitter showed narrowband high-efficiency blue emission by fine molecular modulation. The corresponding OLEDs exhibited a maximum EQE of 21.4% and a small FWHM of 45 nm, representing the most efficient nondoped blue TADF-OLEDs.![]()
Collapse
Affiliation(s)
- Jianmei Han
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China .,College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Yuntao Qiu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Ziyang Xie
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
15
|
Cai X, Xue J, Li C, Liang B, Ying A, Tan Y, Gong S, Wang Y. Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron‐Oxygen‐Nitrogen Embedded Polycyclic Aromatic System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jianan Xue
- Jilin University College of Chemistry CHINA
| | - Chenglong Li
- Jilin University College of Chemistry 2699# Qianjin Avenue Changchun CHINA
| | | | - Ao Ying
- Wuhan University Department of Chemistry CHINA
| | - Yao Tan
- Wuhan University Department of Chemistry CHINA
| | | | - Yue Wang
- Jilin University College of Chemistry CHINA
| |
Collapse
|
16
|
Hong X, Zhang D, Yin C, Wang Q, Zhang Y, Huang T, Wei J, Zeng X, Meng G, Wang X, Li G, Yang D, Ma D, Duan L. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102970. [PMID: 34705318 PMCID: PMC8693050 DOI: 10.1002/advs.202102970] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The development of simple, efficient, and biocompatible organic luminescent molecules is of great significance to the clinical transformation of biomaterials. In recent years, purely organic thermally activated delayed fluorescence (TADF) materials with an extremely small single-triplet energy gap (ΔEST ) have been considered as the most promising new-generation electroluminescence emitters, which is an enormous breakthrough in organic optoelectronics. By merits of the unique photophysical properties, high structure flexibility, and reduced health risks, such metal-free TADF luminophores have attracted tremendous attention in biomedical fields, including conventional fluorescence imaging, time-resolved imaging and sensing, and photodynamic therapy. However, there is currently no systematic summary of the TADF materials for biomedical applications, which is presented in this review. Besides a brief introduction of the major developments of TADF material, the typical TADF mechanisms and fundamental principles on design strategies of TADF molecules and nanomaterials are subsequently described. Importantly, a specific emphasis is placed on the discussion of TADF materials for various biomedical applications. Finally, the authors make a forecast of the remaining challenges and future developments. This review provides insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine, which will be highly valuable to exploit new luminescent materials.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
18
|
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R, Beljonne D, Olivier Y, Hatakeyama T. Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl 2021; 60:17910-17914. [PMID: 34038618 DOI: 10.1002/anie.202105032] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium
| | - Hajime Gotoh
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Keita Tabata
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
19
|
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R, Beljonne D, Olivier Y, Hatakeyama T. Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroyuki Tanaka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - Susumu Oda
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide Namur Institute of Structured Matter Université de Namur Rue de Bruxelles, 61 5000 Namur Belgium
| | - Hajime Gotoh
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Keita Tabata
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials Université de Mons Place du Parc 20 7000 Mons Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide Namur Institute of Structured Matter Université de Namur Rue de Bruxelles, 61 5000 Namur Belgium
| | - Takuji Hatakeyama
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
20
|
Wu P, Xie FM, Wei HX, Li YQ, Dai GL, Wang Y, Tang JX, Zhao X. Thermally activated delayed fluorescent emitters based on 3-(phenylsulfonyl)pyridine. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Xu Y, Wang Q, Cai X, Li C, Wang Y. Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100652. [PMID: 33864284 DOI: 10.1002/adma.202100652] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Purely organic fluorescent materials that concurrently exhibit high efficiency, narrowband emission, and circularly polarized luminescence (CPL) remain an unaddressed issue despite their promising applications in wide color gamut- and 3D-display. Herein, the CPL optical property and multiple resonance (MR) effect induced thermally activated delayed fluorescence (MR-TADF) emission are integrated with high color purity and luminous efficiency together. Two pairs of highly efficient green CP-MR-TADF enantiomers, namely, (R/S)-OBN-2CN-BN and (R/S)-OBN-4CN-BN, are developed. The enantiomer-based organic light-emitting diodes (OLEDs) exhibit pure green emission with narrow full-width at half-maximums (FWHMs) of 30 and 33 nm, high maximum external quantum efficiencies (EQEs) of 29.4% and 24.5%, and clear circularly polarized electroluminescence (CPEL) signals with electroluminescence dissymmetry factors (gEL ) of +1.43 × 10-3 /-1.27 × 10-3 and +4.60 × 10-4 /-4.76 × 10-4 , respectively. This is the first example of a highly efficient OLED that exhibits CPEL signal, narrowband emission, and TADF concurrently.
Collapse
Affiliation(s)
- Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinliang Cai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| |
Collapse
|
22
|
Lim H, Cheon HJ, Woo SJ, Kwon SK, Kim YH, Kim JJ. Highly Efficient Deep-Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004083. [PMID: 33079442 DOI: 10.1002/adma.202004083] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Indexed: 05/12/2023]
Abstract
New blue (DBA-SAB) and deep-blue (TDBA-SAF) thermally activated delayed fluorescence (TADF) emitters are synthesized for blue-emitting organic-light emitting diodes (OLEDs) by incorporating spiro-biacridine and spiro-acridine fluorene donor units with an oxygen-bridged boron acceptor unit, respectively. The molecules show blue and deep-blue emission because of the deep highest occupied molecular energy levels of the donor units. Besides, both emitters exhibit narrow emission spectra with the full-width at half maximum (FWHM) of less than 65 nm due to the rigid donor and acceptor units. In addition, the long molecular structure along the transition dipole moment direction results in a high horizontal emitting dipole ratio over 80%. By combining the effects, the OLED utilizing DBA-SAB as the emitter exhibits a maximum external quantum efficiency (EQE) of 25.7% and 1931 Commission Internationale de l'éclairage (CIE) coordinates of (0.144, 0.212). Even a higher efficiency deep blue TADF OLED with a maximum EQE of 28.2% and CIE coordinates of (0.142, 0.090) is realized using TDBA-SAF as the emitter.
Collapse
Affiliation(s)
- Hyoungcheol Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Hyung Jin Cheon
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung-Je Woo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jang-Joo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
23
|
Xu Y, Li C, Li Z, Wang Q, Cai X, Wei J, Wang Y. Constructing Charge‐Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angew Chem Int Ed Engl 2020; 59:17442-17446. [DOI: 10.1002/anie.202007210] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Yincai Xu
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Chenglong Li
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiqiang Li
- Jihua Laboratory 13 Nanpingxi Road Foshan 528200 Guangdong Province China
| | - Qingyang Wang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Xinliang Cai
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Jinbei Wei
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Yue Wang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Laboratory 13 Nanpingxi Road Foshan 528200 Guangdong Province China
| |
Collapse
|
24
|
Xu Y, Li C, Li Z, Wang Q, Cai X, Wei J, Wang Y. Constructing Charge‐Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007210] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yincai Xu
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Chenglong Li
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiqiang Li
- Jihua Laboratory 13 Nanpingxi Road Foshan 528200 Guangdong Province China
| | - Qingyang Wang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Xinliang Cai
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Jinbei Wei
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Yue Wang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Laboratory 13 Nanpingxi Road Foshan 528200 Guangdong Province China
| |
Collapse
|
25
|
Zhang D, Song X, Gillett AJ, Drummond BH, Jones STE, Li G, He H, Cai M, Credgington D, Duan L. Efficient and Stable Deep-Blue Fluorescent Organic Light-Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908355. [PMID: 32249984 DOI: 10.1002/adma.201908355] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 05/22/2023]
Abstract
Multiple donor-acceptor-type carbazole-benzonitrile derivatives that exhibit thermally activated delayed fluorescence (TADF) are the state of the art in efficiency and stability in sky-blue organic light-emitting diodes. However, such a motif still suffers from low reverse intersystem crossing rates (kRISC ) with emission peaks <470 nm. Here, a weak acceptor of cyanophenyl is adopted to replace the stronger cyano one to construct blue emitters with multiple donors and acceptors. Both linear donor-π-donor and acceptor-π-acceptor structures are observed to facilitate delocalized excited states for enhanced mixing between charge-transfer and locally excited states. Consequently, a high kRISC of 2.36 × 106 s-1 with an emission peak of 456 nm and a maximum external quantum efficiency of 22.8% is achieved. When utilizing this material to sensitize a blue multiple-resonance TADF emitter, the corresponding device simultaneously realizes a maximum external quantum efficiency of 32.5%, CIEy ≈ 0.12, a full width at half maximum of 29 nm, and a T80 (time to 80% of the initial luminance) of > 60 h at an initial luminance of 1000 cd m-2 .
Collapse
Affiliation(s)
- Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaozeng Song
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Bluebell H Drummond
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Saul T E Jones
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hanqing He
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Minghan Cai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dan Credgington
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Xie FM, Zou SJ, Li Y, Lu LY, Yang R, Zeng XY, Zhang GH, Chen J, Tang JX. Management of Delayed Fluorophor-Sensitized Exciton Harvesting for Stable and Efficient All-Fluorescent White Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16736-16742. [PMID: 32193927 DOI: 10.1021/acsami.0c04251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
White organic light-emitting diodes (WOLEDs) using thermally activated delayed fluorescence (TADF)-based single emissive layer (SEL) have attracted enormous attention because of their simple device structure and full exciton utilization potential for high efficiency. However, WOLEDs made of an all-TADF SEL usually exhibit serious efficiency roll-off and poor color stability due to serious exciton-annihilation and unbalanced radiative decays of different TADF emitters. Herein, a new strategy is proposed to manipulate the TADF-sensitized fluorescence process by combining dual-host systems of high triplet energy with a conventional fluorescent emitter of complementary color. The multiple energy-funneling paths are modulated and short-range Dexter energy transfer is largely suppressed due to the steric effect of peripheral tert-butyl group in the blue TADF sensitizer. The resulting all-fluorescent WOLEDs achieve an unprecedentedly high external quantum efficiency of 21.8% with balanced white emission of Commission Internationale de l'Eclairage coordinate of (0.292, 0.343), accompanied with good color stability, reduced efficiency roll-off, and prolonged operational lifetime. These findings demonstrate the validity of this strategy for precisely allocating the exciton harvesting in SEL WOLEDs.
Collapse
Affiliation(s)
- Feng-Ming Xie
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Shi-Jie Zou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanqing Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
- School of Physics and Electronics Science, Nanophotonics & Advanced Instrument Engineering Research Center, Ministry of Education, East China Normal University, Shanghai 200062, China
| | - Lin-Yang Lu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Yang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Xin-Yi Zeng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Guang-Hui Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingde Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian-Xin Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Organic Optoelectronics (IOO), JITRI, Wujiang, Suzhou 215215, China
| |
Collapse
|