1
|
Bulemo PM, Kim DH, Shin H, Cho HJ, Koo WT, Choi SJ, Park C, Ahn J, Güntner AT, Penner RM, Kim ID. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem Rev 2025; 125:4111-4183. [PMID: 40198852 DOI: 10.1021/acs.chemrev.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly functional chemical gas sensors has surged due to the increasing awareness of human health to monitor metabolic disorders or noncommunicable diseases, safety measures against harmful greenhouse and/or explosive gases, and determination of food freshness. Over the years of dedicated research, several types of chemiresistive gas sensors have been realized with appreciable sensitivities toward various gases. However, critical issues such as poor selectivity and sluggish response/recovery speeds continue to impede their widespread commercialization. Specifically, the mechanisms behind the selective response of some chemiresistive materials toward specific gas analytes remain unclear. In this review, we discuss state-of-the-art strategies employed to attain gas-selective chemiresistive materials, with particular emphasis on materials design, surface modification or functionalization with catalysts, defect engineering, material structure control, and integration with physical/chemical gas filtration media. The nature of material surface-gas interactions and the supporting mechanisms are elucidated, opening opportunities for optimizing the materials design, fine-tuning the gas sensing performance, and guiding the selection of the most appropriate materials for the accurate detection of specific gases. This review concludes with recommendations for future research directions and potential opportunities for further selectivity improvements.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Dong-Ha Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Andreas T Güntner
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Ma DF, Liu HQ, Zhang XY, Jia YN, Zhang X, Niu F, Zhang KF, Zhao YQ. N-doped graphdiyne derivative for highly selective and ultrasensitive NH 3 sensing at room temperature. Phys Chem Chem Phys 2025. [PMID: 40018798 DOI: 10.1039/d4cp04718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The detection of ammonia (NH3) at room temperature is of paramount importance for human health, production safety, and environmental protection. However, the application of common NH3-sensitive materials is seriously limited by their low sensitivity and poor selectivity. Herein, starting from molecular structure design, an N-doped graphdiyne derivative (N-GDYD) with a definite N-doping site was synthesized via the Glaser coupling of 2,4,6-tris((trimethylsilyl) ethynyl)-1,3,5-triazine. Owing to the rich ethynyl groups and triazine N atoms, the N-GDYD gas sensor showed excellent NH3 sensing performance at room temperature (20 °C). For instance, it possessed a high response value of -67.7%, an extremely short response time of 92 s, and a short recovery time of 280 s for 100 ppm NH3. Although the NH3 concentration decreased to 10 ppb, it still exhibited a response of -12.4%. In particular, the N-GDYD gas sensor exhibited a specific response to NH3 and showed negligible responses to 13 other types of gases and organic reagent vapors. In situ UV-vis spectra and DFT calculation results confirmed that the alkyne bond and N atoms in the triazine ring were the adsorption sites for NH3. These active sites have strong interactions with NH3 and thus promoted electron transportation from the NH3 molecules to N-GDYD. Evidently, this work provides a new strategy for the design of high-performance NH3 sensing materials.
Collapse
Affiliation(s)
- Dong-Feng Ma
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China.
| | - Hai-Qi Liu
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xi-Yu Zhang
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Ya-Nan Jia
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xue Zhang
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Fang Niu
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Kai-Feng Zhang
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China.
| | - Yong-Qing Zhao
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Park SJ, Lee SM, Lee J, Choi S, Nam GB, Jo YK, Hwang IS, Jang HW. Pd-W 18O 49 Nanowire MEMS Gas Sensor for Ultraselective Dual Detection of Hydrogen and Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405809. [PMID: 39508302 DOI: 10.1002/smll.202405809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Demand for real-time detection of hydrogen and ammonia, clean energy carriers, in a sensitive and selective manner, is growing rapidly for energy, industrial, and medical applications. Nevertheless, their selective detection still remains a challenge and requires the utilization of diverse sensors, hampering the miniaturization of sensor modules. Herein, a practical approach via material design and facile temperature modulation for dual selectivity is proposed. A Pd nanoparticles-decorated W18O49 nanowire gas sensor is prepared for dual detection of hydrogen and ammonia. The sensor exhibits distinct operating temperatures for ultraselective detection of hydrogen (125 °C) and ammonia (225 °C), with high responses of 35.3 and 133.8, respectively. This dual selectivity with high sensitivity is attributed to enhanced oxygen adsorption, the chemical affinity of sensing materials for target gases, and distinct reactivity profiles of gases. The proposed sensor is further integrated into a microelectromechanical system, enabling its small size, low power consumption, and rapid temperature modulation. Moreover, the practical feasibility of this sensor platform for smart energy monitoring systems is demonstrated by assessing its sensing properties in electrochemical ammonia oxidation reaction systems. This work can provide a practical approach for developing a single gas sensor with multiple functionalities for application in electronic nose systems.
Collapse
Affiliation(s)
- Seon Ju Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwoo Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyun Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Baek Nam
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | | | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
4
|
Wang Y, Song Z, Liu Y, Chen Y, Li J, Li L, Yao J. Hydrophobic functionalization of a metal-organic framework as an ammonia visual sensing material under high humidity conditions. Dalton Trans 2024; 53:6802-6808. [PMID: 38536010 DOI: 10.1039/d3dt04292h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Since exhaled ammonia (NH3) is one of the metabolic markers of liver and kidney diseases, ammonia visual sensing materials in humid environments have received extensive attention and investigation. Herein, through a tailor-made pore environment provided by metal-organic framework (MOF) materials (CH3-Cu(BDC)), we achieved NH3 anti-interference sensing with apparent color changing under humid conditions. With methyl (CH3-) functionalization, CH3-Cu(BDC) demonstrated a strong response for trace ammonia and showed high selectivity under a humid environment. Grand canonical Monte Carlo (GCMC) simulations indicated that CH3-Cu(BDC) showed stronger attraction towards NH3 molecules than H2O. Benefiting from the target changing coordination environment, CH3-Cu(BDC) showed a rapid response and simple analysis properties for patients' exhaled air. The strategy used in this study not only provides a demonstration case for NH3 colorimetric sensing with high humidity and anti-interference but also introduces a new method for painless and quick exhaled breath analysis for diagnosis of patients with kidney and liver diseases.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Zhengxuan Song
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yutao Liu
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yang Chen
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jinping Li
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Libo Li
- College of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030024, China.
| |
Collapse
|
5
|
D'Andria M, Krumeich F, Yao Z, Wang FR, Güntner AT. Structure-Function Relationship of Highly Reactive CuO x Clusters on Co 3 O 4 for Selective Formaldehyde Sensing at Low Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308224. [PMID: 38143268 PMCID: PMC10933674 DOI: 10.1002/advs.202308224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Designing reactive surface clusters at the nanoscale on metal-oxide supports enables selective molecular interactions in low-temperature catalysis and chemical sensing. Yet, finding effective material combinations and identifying the reactive site remains challenging and an obstacle for rational catalyst/sensor design. Here, the low-temperature oxidation of formaldehyde with CuOx clusters on Co3 O4 nanoparticles is demonstrated yielding an excellent sensor for this critical air pollutant. When fabricated by flame-aerosol technology, such CuOx clusters are finely dispersed, while some Cu ions are incorporated into the Co3 O4 lattice enhancing thermal stability. Importantly, infrared spectroscopy of adsorbed CO, near edge X-ray absorption fine structure spectroscopy and temperature-programmed reduction in H2 identified Cu+ and Cu2+ species in these clusters as active sites. Remarkably, the Cu+ surface concentration correlated with the apparent activation energy of formaldehyde oxidation (Spearman's coefficient ρ = 0.89) and sensor response (0.96), rendering it a performance descriptor. At optimal composition, such sensors detected even the lowest formaldehyde levels of 3 parts-per-billion (ppb) at 75°C, superior to state-of-the-art sensors. Also, selectivity to other aldehydes, ketones, alcohols, and inorganic compounds, robustness to humidity and stable performance over 4 weeks are achieved, rendering such sensors promising as gas detectors in health monitoring, air and food quality control.
Collapse
Affiliation(s)
- Matteo D'Andria
- Human‐centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH ZurichZurichCH‐8092Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic Chemistry, ETH ZurichZurichCH‐8093Switzerland
| | - Zhangyi Yao
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Feng Ryan Wang
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Andreas T. Güntner
- Human‐centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|
6
|
Wu ZF, Wang C, Liu X, Tan K, Fu Z, Teat SJ, Li ZW, Hei X, Huang XY, Xu G, Li J. Confinement of 1D Chain and 2D Layered CuI Modules in K-INA-R Frameworks via Coordination Assembly: Structure Regulation and Semiconductivity Tuning. J Am Chem Soc 2023; 145:19293-19302. [PMID: 37616202 DOI: 10.1021/jacs.3c05095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Herein, we present a new series of CuI-based hybrid materials with tunable structures and semiconducting properties. The CuI inorganic modules can be tailored into a one-dimensional (1D) chain and two-dimensional (2D) layer and confined/stabilized in coordination frameworks of potassium isonicotinic acid (HINA) and its derivatives (HINA-R, R = OH, NO2, and COOH). The resulting CuI-based hybrid materials exhibit interesting semiconducting behaviors associated with the dimensionality of the inorganic module; for instance, the structures containing the 2D-CuI module demonstrate significantly enhanced photoconductivity with a maximum increase of five orders of magnitude compared to that of the structures containing the 1D-CuI module. They also represent the first CuI-bearing hybrid chemiresistive gas sensors for NO2 with boosted sensing performance and sensitivity at multiple orders of magnitude over that of the pristine CuI. Particularly, the sensing ability of CuI-K-INA containing both 1D- and 2D-CuI modules is comparable to those of the best NO2 chemiresistors reported thus far.
Collapse
Affiliation(s)
- Zhao-Feng Wu
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Brunswick, New Jersey 08854, United States
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Chuanzhe Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xingwu Liu
- Synfuels China Technology Co.Ltd., Leyuan Second South Street Yanqi Development Zone Huairou, Beijing 101407, P. R. China
| | - Kui Tan
- Department of Chemistry, University of North Texas, 1155 Union Cir, Denton, Texas 76203, United States
| | - Zhihua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Zi-Wei Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Brunswick, New Jersey 08854, United States
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
7
|
Oosthuizen DN, Weber IC. A Strategy to Enhance Humidity Robustness of p‐Type CuO Sensors for Breath Acetone Quantification. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Dina N. Oosthuizen
- Particle Technology Laboratory Department of Mechanical & Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Ines C. Weber
- Particle Technology Laboratory Department of Mechanical & Process Engineering ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetes, and Clinical Nutrition University Hospital Zurich CH-8091 Zurich Switzerland
| |
Collapse
|
8
|
Güntner AT, Schenk FM. Environmental formaldehyde sensing at room temperature by smartphone-assisted and wearable plasmonic nanohybrids. NANOSCALE 2023; 15:3967-3977. [PMID: 36723208 PMCID: PMC9949580 DOI: 10.1039/d2nr06599a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Formaldehyde is a toxic and carcinogenic indoor air pollutant. Promising for its routine detection are gas sensors based on localized surface plasmon resonance (LSPR). Such sensors trace analytes by converting tiny changes in the local dielectric environment into easily readable, optical signals. Yet, this mechanism is inherently non-selective to volatile organic compounds (like formaldehyde) and yields rarely detection limits below parts-per-million concentrations. Here, we reveal that chemical reaction-mediated LSPR with nanohybrids of Ag/AgOx core-shell clusters on TiO2 enables highly selective formaldehyde sensing down to 5 parts-per-billion (ppb). Therein, AgOx is reduced by the formaldehyde to metallic Ag resulting in strong plasmonic signal changes, as measured by UV/Vis spectroscopy and confirmed by X-ray diffraction. This interaction is highly selective to formaldehyde over other aldehydes, alcohols, ketones, aromatic compounds (as confirmed by high-resolution mass spectrometry), inorganics, and quite robust to relative humidity changes. Since this sensor works at room temperature, such LSPR nanohybrids are directly deposited onto flexible wristbands to quantify formaldehyde between 40-500 ppb at 50% RH, even with a widely available smartphone camera (Pearson correlation coefficient r = 0.998). Such chemoresponsive coatings open new avenues for wearable devices in environmental, food, health and occupational safety applications, as demonstrated by an early field test in the pathology of a local hospital.
Collapse
Affiliation(s)
- Andreas T Güntner
- Human-centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zürich, Switzerland
| | - Florian M Schenk
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
9
|
Li M, Tang J, Luo Y, Yang J, Liu J, Peng J, Fang Y. Imine Bond-Based Fluorescent Nanofilms toward High-Performance Detection and Efficient Removal of HCl and NH 3. Anal Chem 2023; 95:2094-2101. [PMID: 36633555 DOI: 10.1021/acs.analchem.2c05059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new kind of imine bond-based fluorescent nanofilm was developed as multifunctional materials for high-performance detection and efficient removal of hydrogen chloride (HCl) and ammonia (NH3). The flexible, uniform, and photochemically stable nanofilms as prepared showed fast (<1 and <0.5 s), sensitive (<150 ppb and <1.5 ppm), and selective response to HCl and NH3, respectively, and the removal efficiencies to HCl and NH3 are 187.5 and 37.5% (w/w), respectively. A reversible earthy-red to green fluorescence color change upon adsorption of NH3 or HCl enabled visualized monitoring of the two gases in the air. Mechanism studies revealed that the adsorption of HCl is a result of hydrogen bond formation between the analyte and the imine groups. Adsorption of NH3, however, is a result of chemical reaction with the pre-adsorbed HCl. The applicability of the detection and removal strategies as developed was further verified by conducting the tests on real-life or simulated scenarios.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Jianfei Liu
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi710016, China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| |
Collapse
|
10
|
Zhang M, Liu K, Xu J, Wang P, Sun J, Ding W, Wang C, Zhang K. Porous Oxide-Functionalized Seaweed Fabric as a Flexible Breath Sensor for Noninvasive Nephropathy Diagnosis. ACS Sens 2022; 7:2634-2644. [PMID: 35984967 DOI: 10.1021/acssensors.2c01014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ever-increasing quality of life demands low-power and reliable gas-sensing technology for point-of-care monitoring of human health by relevant breath biomarkers. However, precise identification is rather challenging due to the relatively small concentration and an abundance of interferents. Herein, a breath sensor that can detect ppb-level ammonia is constructed based on a soft-hard interface design of biocompatible seaweed fabric and nanosheet-assembled bismuth oxide architectures after undergoing heat treatment. Benefiting from abundant defective sites and surface chemical state changes, the flexible sensor can work at room temperature and exhibits superior characteristics for ammonia detection, including ultrahigh response (1296), short response/recovery time (12/6 s), small detection limit (117 ppb), and remarkable anti-interference, even after repetitive mechanical bending and long-term fatigue. Furthermore, the flexible sensor demonstrates a noticeable response to the exhaled breath of a patient with Helicobacter pylori infection. After connecting the sensor with a green-light-emitting diode (LED) in the circuit, an alarm system successfully warns about ammonia levels based on the brightness of the LED. This work provides a potential strategy for wide-range ammonia detection and opens new applications in predictive and personalized healthcare platforms for noninvasive medical diagnosis.
Collapse
Affiliation(s)
- Mingxin Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Kai Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Jin Xu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing 100142, P. R. China
| | - Pengzhen Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, P. R. China
| | - Wei Ding
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Cong Wang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
11
|
Singh S, Deb J, Sarkar U, Sharma S. MoSe 2/multiwalled carbon nanotube composite for ammonia sensing in natural humid environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128821. [PMID: 35468389 DOI: 10.1016/j.jhazmat.2022.128821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report ammonia sensing in a natural highly humid environment using MoSe2/multi-walled carbon nanotube (MWCNT) composite as sensing platform. The composite synthesis involved two steps, in the first step, MWCNTs were treated in an acidic medium to obtain -COOH group functionalized MWCNTs. In the second step, functionalized MWCNTs were probe sonicated with MoSe2 to obtain MoSe2/MWCNT composite. Proposed device exhibited superior sensing properties at a temperature down to 16∘ C and relative humidity of 80%. Under these extreme natural environmental conditions, the device exhibited a relative response of 21% for 0.5 ppm of ammonia and superior noise free signal further suggests their use even below this concentration. Composite based device has also displayed better adsorption selectivity towards NH3 as compared with other reducing and oxidizing gas molecules. Density functional theory simulations were further employed to understand the underlying adsorption process and selectivity behavior of the composite. Simulations predicted lowest negative adsorption energy for ammonia, implying physisorption (-0.387 eV) type exothermic adsorption process. Present results indicate that a composite with the rightly engineered MoSe2 and MWCNTs weight ratio may serve as a potential candidate for ammonia sensing in a highly humid environment.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyotirmoy Deb
- Department of Physics, Assam University, Silchar 788011, India
| | - Utpal Sarkar
- Department of Physics, Assam University, Silchar 788011, India.
| | - Sandeep Sharma
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
12
|
Xue C, Zhang Y, Liu B, Gao S, Yang H, Li P, Hoa ND, Xu Y, Zhang Z, Niu J, Liao X, Cui D, Jin H. Smartphone Case-Based Gas Sensing Platform for On-site Acetone Tracking. ACS Sens 2022; 7:1581-1592. [PMID: 35536008 DOI: 10.1021/acssensors.2c00603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas sensor-embedded smartphones would offer the opportunity of on-site tracking of gas molecules for various applications, for example, harmful air pollutant alarms or noninvasive assessment of health status. Nevertheless, high power consumption and difficulty in replacing malfunctioned sensors as well as limited space in the smartphone to host the sensor restrain the relevant advancements. In this article, we create a smartphone case-based sensing platform by integrating the functional units into a smartphone case, which performs a low detection limit of 117 ppb to acetone and high specificity. Particularly, dimming glass-regulated light fidelity (Li-Fi) communication is successfully developed, allowing the sensing platform to operate with relatively low power consumption (around 217 mW). Experimental proof on harmful gas sensing and potential clinic application is implemented with the sensing platform, demonstrating satisfactory sensing performance and acceptable health risk pre-warning accuracy (87%). Thus, the developed smartphone case-based sensing platform would be a good candidate for realizing harmful gas alarms and noninvasive assessment of health status.
Collapse
Affiliation(s)
- Cuili Xue
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuna Zhang
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bin Liu
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nguyen Duc Hoa
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 112400, Vietnam
| | - Yuli Xu
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhenghu Zhang
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaqi Niu
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Daxiang Cui
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Han Jin
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Barik P, Pradhan M. Selectivity in trace gas sensing: recent developments, challenges, and future perspectives. Analyst 2022; 147:1024-1054. [DOI: 10.1039/d1an02070f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Selectivity is one of the most crucial figures of merit in trace gas sensing, and thus a comprehensive assessment is necessary to have a clear picture of sensitivity, selectivity, and their interrelations in terms of quantitative and qualitative views.
Collapse
Affiliation(s)
- Puspendu Barik
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| | - Manik Pradhan
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| |
Collapse
|
14
|
Sousanis A, Biskos G. Thin Film and Nanostructured Pd-Based Materials for Optical H 2 Sensors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3100. [PMID: 34835864 PMCID: PMC8623850 DOI: 10.3390/nano11113100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/17/2023]
Abstract
In this review paper, we provide an overview of state-of-the-art Pd-based materials for optical H2 sensors. The first part of the manuscript introduces the operating principles, providing background information on the thermodynamics and the primary mechanisms of optical detection. Optical H2 sensors using thin films (i.e., films without any nanostructuring) are discussed first, followed by those employing nanostructured materials based on aggregated or isolated nanoparticles (ANPs and INPs, respectively), as well as complex nanostructured (CN) architectures. The different material types are discussed on the basis of the properties they can attribute to the resulting sensors, including their limit of detection, sensitivity, and response time. Limitations induced by cracking and the hysteresis effect, which reduce the repeatability and reliability of the sensors, as well as by CO poisoning that deteriorates their performance in the long run, are also discussed together with an overview of manufacturing approaches (e.g., tailoring the composition and/or applying functionalizing coatings) for addressing these issues.
Collapse
Affiliation(s)
- Andreas Sousanis
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus;
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus;
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands
| |
Collapse
|
15
|
Bonciu AF, Filipescu M, Voicu SI, Lippert T, Palla-Papavlu A. Facile Fabrication of Hybrid Carbon Nanotube Sensors by Laser Direct Transfer. NANOMATERIALS 2021; 11:nano11102604. [PMID: 34685045 PMCID: PMC8539917 DOI: 10.3390/nano11102604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/28/2023]
Abstract
Ammonia is one of the most frequently produced chemicals in the world, and thus, reliable measurements of different NH3 concentrations are critical for a variety of industries, among which are the agricultural and healthcare sectors. The currently available technologies for the detection of NH3 provide accurate identification; however, they are limited by size, portability, and fabrication cost. Therefore, in this work, we report the laser-induced forward transfer (LIFT) of single-walled carbon nanotubes (SWCNTs) decorated with tin oxide nanoparticles (SnO2 NPs), which act as sensitive materials in chemiresistive NH3 sensors. We demonstrate that the LIFT-fabricated sensors can detect NH3 at room temperature and have a response time of 13 s (for 25 ppm NH3). In addition, the laser-fabricated sensors are fully reversible when exposed to multiple cycles of NH3 and have an excellent theoretical limit of detection of 24 ppt.
Collapse
Affiliation(s)
- Anca F. Bonciu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania; (A.F.B.); (M.F.)
- Faculty of Physics, University of Bucharest, Atomistilor 409, 077125 Magurele, Romania
| | - Mihaela Filipescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania; (A.F.B.); (M.F.)
| | - Stefan I. Voicu
- Department of Analytical and Environmental Chemistry, University Politechnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Thomas Lippert
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland;
- Laboratory of Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alexandra Palla-Papavlu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania; (A.F.B.); (M.F.)
- Correspondence:
| |
Collapse
|
16
|
Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1927. [PMID: 34443755 PMCID: PMC8398721 DOI: 10.3390/nano11081927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
In the last decades, nanomaterials have emerged as multifunctional building blocks for the development of next generation sensing technologies for a wide range of industrial sectors including the food industry, environment monitoring, public security, and agricultural production. The use of advanced nanosensing technologies, particularly nanostructured metal-oxide gas sensors, is a promising technique for monitoring low concentrations of gases in complex gas mixtures. However, their poor conductivity and lack of selectivity at room temperature are key barriers to their practical implementation in real world applications. Here, we provide a review of the fundamental mechanisms that have been successfully implemented for reducing the operating temperature of nanostructured materials for low and room temperature gas sensing. The latest advances in the design of efficient architecture for the fabrication of highly performing nanostructured gas sensing technologies for environmental and health monitoring is reviewed in detail. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in the design and development of low and room temperature nanostructured gas sensing technologies.
Collapse
Affiliation(s)
- Xiaohu Chen
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Michelle Leishman
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Darren Bagnall
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
17
|
Weber IC, Wang CT, Güntner AT. Room-Temperature Catalyst Enables Selective Acetone Sensing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1839. [PMID: 33917648 PMCID: PMC8067997 DOI: 10.3390/ma14081839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driven) devices. Here, we reveal room-temperature catalytic filters that facilitate highly selective acetone sensing, a breath marker for body fat burn monitoring. Varying the Pt content between 0-10 mol% during flame spray pyrolysis resulted in Al2O3 nanoparticles decorated with Pt/PtOx clusters with predominantly 5-6 nm size, as revealed by X-ray diffraction and electron microscopy. Most importantly, Pt contents above 3 mol% removed up to 100 ppm methanol, isoprene and ethanol completely already at 40 °C and high relative humidity, while acetone was mostly preserved, as confirmed by mass spectrometry. When combined with an inexpensive, chemo-resistive sensor of flame-made Si/WO3, acetone was detected with high selectivity (≥225) over these interferants next to H2, CO, form-/acetaldehyde and 2-propanol. Such catalytic filters do not require additional heating anymore, and thus are attractive for integration into mobile health care devices to monitor, for instance, lifestyle changes in gyms, hospitals or at home.
Collapse
Affiliation(s)
- Ines C. Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
| | - Chang-ting Wang
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
| | - Andreas T. Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| |
Collapse
|
18
|
van den Broek J, Weber IC, Güntner AT, Pratsinis SE. Highly selective gas sensing enabled by filters. MATERIALS HORIZONS 2021; 8:661-684. [PMID: 34821311 DOI: 10.1039/d0mh01453b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Portable and inexpensive gas sensors are essential for the next generation of non-invasive medical diagnostics, smart air quality monitoring & control, human search & rescue and food quality assessment to name a few of their immediate applications. Therein, analyte selectivity in complex gas mixtures like breath or indoor air remains the major challenge. Filters are an effective and versatile, though often unrecognized, route to overcome selectivity issues by exploiting additional properties of target analytes (e.g., molecular size and surface affinity) besides reactivity with the sensing material. This review provides a tutorial for the material engineering of sorption, size-selective and catalytic filters. Of specific interest are high surface area sorbents (e.g., activated carbon, silica gels and porous polymers) with tunable properties, microporous materials (e.g., zeolites and metal-organic frameworks) and heterogeneous catalysts, respectively. Emphasis is placed on material design for targeted gas separation, portable device integration and performance. Finally, research frontiers and opportunities for low-cost gas sensing systems in emerging applications are highlighted.
Collapse
Affiliation(s)
- Jan van den Broek
- Particle Technology Laboratory, Institute of Energy & Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
19
|
Wang D, Zhang D, Yang Y, Mi Q, Zhang J, Yu L. Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal-Organic Framework-Derived CuO Nanohybrid Ammonia Sensor. ACS NANO 2021; 15:2911-2919. [PMID: 33554603 DOI: 10.1021/acsnano.0c09015] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m-2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (Vg/Va = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2Tx MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.
Collapse
Affiliation(s)
- Dongyue Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Mi
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianhua Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liandong Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
20
|
Güntner AT, Magro L, van den Broek J, Pratsinis SE. Detecting methanol in hand sanitizers. iScience 2021; 24:102050. [PMID: 33537657 PMCID: PMC7840468 DOI: 10.1016/j.isci.2021.102050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has increased dramatically the demand for hand sanitizers. A major concern is methanol adulteration that caused more than 700 fatalities in Iran and U.S.A. (since February 2020). In response, the U.S. Food and Drug Administration has restricted the methanol content in sanitizers to 0.063 vol% and blacklisted 212 products (as of November 20, 2020). Here, we present a low-cost, handheld, and smartphone-assisted device that detects methanol selectively in sanitizers between 0.01 and 100 vol% within two minutes. It features a nanoporous polymer column that separates methanol selectively from confounders by adsorption. A chemoresistive gas sensor detects the methanol. When tested on commercial sanitizers (total 76 samples), methanol was quantified in excellent (R2 = 0.99) agreement to "gold standard" gas chromatography. Importantly, methanol quantification was hardly interfered by sanitizer composition and viscosity. This device meets an urgent need for on-site methanol screening by authorities, health professionals, and even laymen.
Collapse
Affiliation(s)
- Andreas T. Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Leandro Magro
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Jan van den Broek
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
21
|
Ishida J, Oikawa T, Nakagawa C, Takano K, Fujioka K, Kikuchi Y, Tsuboi O, Ueda K, Nakano M, Saeki C, Torisu Y, Ikeda Y, Saruta M, Tsubota A. Real-time breath ammonia measurement using a novel cuprous bromide sensor device in patients with chronic liver disease: a feasibility and pilot study. J Breath Res 2021; 15:026010. [PMID: 33527916 DOI: 10.1088/1752-7163/abb477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We developed a small portable sensor device using a p-type semiconductor cuprous bromide (CuBr) thin film to measure breath ammonia in real time with highsensitivity and selectivity. Breath ammonia is reportedly associated with chronic liver disease (CLD). We aimed to assess the practical utility of the novel CuBr sensor device for exhaled breath ammonia and the correlation between breath and blood ammonia in CLD patients. This was a feasibility and pilot clinical study of 21 CLD patients and 18 healthy volunteers. Breath ammonia was directly and quickly measured using the novel CuBr sensor device and compared with blood ammonia measured at the same time. CLD patients had significantly higher breath ammonia levels than healthy subjects (p = 1.51 × 10-3), with the level of significance being similar to that for blood ammonia levels (p= 0.024). Significant differences were found in breath and blood ammonia between the healthy and cirrhosis groups (p = 2.97 × 10-3 and 3.76 × 10-3, respectively). Significant, positive correlations between breath and blood ammonia were noted in the CLD group (R = 0.747, p = 1.00 × 10-4), healthy/CLD group (R = 0.741, p = 6.75 × 10-8), and cirrhosis group (R = 0.744, p = 9.52 × 10-4). In conclusion, the newly developed, easy-to-use, and small portable CuBr sensor device was able to non-invasively measure breath ammonia in real time. Breath ammonia measured using the device was correlated with blood ammonia and the presence of liver cirrhosis, and might be an alternative surrogate biomarker to blood ammonia.
Collapse
Affiliation(s)
- Jinya Ishida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan. Co-equal first authors
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Weber IC, Braun HP, Krumeich F, Güntner AT, Pratsinis SE. Superior Acetone Selectivity in Gas Mixtures by Catalyst-Filtered Chemoresistive Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001503. [PMID: 33042762 PMCID: PMC7539217 DOI: 10.1002/advs.202001503] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Indexed: 05/11/2023]
Abstract
Acetone is a toxic air pollutant and a key breath marker for non-invasively monitoring fat metabolism. Its routine detection in realistic gas mixtures (i.e., human breath and indoor air), however, is challenging, as low-cost acetone sensors suffer from insufficient selectivity. Here, a compact detector for acetone sensing is introduced, having unprecedented selectivity (>250) over the most challenging interferants (e.g., alcohols, aldehydes, aromatics, isoprene, ammonia, H2, and CO). That way, acetone is quantified with fast response (<1 min) down to, at least, 50 parts per billion (ppb) in gas mixtures with such interferants having up to two orders of magnitude higher concentration than acetone at realistic relative humidities (RH = 30-90%). The detector consists of a catalytic packed bed (30 mg) of flame-made Al2O3 nanoparticles (120 m2 g-1) decorated with Pt nanoclusters (average size 9 nm) and a highly sensitive chemo-resistive sensor made by flame aerosol deposition and in situ annealing of nanostructured Si-doped ε-WO3 (Si/WO3). Most importantly, the catalytic packed bed converts interferants continuously enabling highly selective acetone sensing even in the exhaled breath of a volunteer. The detector exhibits stable performance over, at least, 145 days at 90% RH, as validated by mass spectrometry.
Collapse
Affiliation(s)
- Ines C. Weber
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Hugo P. Braun
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Frank Krumeich
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Andreas T. Güntner
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
24
|
Abegg S, Klein Cerrejon D, Güntner AT, Pratsinis SE. Thickness Optimization of Highly Porous Flame-Aerosol Deposited WO 3 Films for NO 2 Sensing at ppb. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1170. [PMID: 32560051 PMCID: PMC7353271 DOI: 10.3390/nano10061170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen dioxide (NO2) is a major air pollutant resulting in respiratory problems, from wheezing, coughing, to even asthma. Low-cost sensors based on WO3 nanoparticles are promising due to their distinct selectivity to detect NO2 at the ppb level. Here, we revealed that controlling the thickness of highly porous (97%) WO3 films between 0.5 and 12.3 μm altered the NO2 sensitivity by more than an order of magnitude. Therefore, films of WO3 nanoparticles (20 nm in diameter by N2 adsorption) with mixed γ- and ε-phase were deposited by single-step flame spray pyrolysis without affecting crystal size, phase composition, and film porosity. That way, sensitivity and selectivity effects were associated unambiguously to thickness, which was not possible yet with other sensor fabrication methods. At the optimum thickness (3.1 μm) and 125 °C, NO2 concentrations were detected down to 3 ppb at 50% relative humidity (RH), and outstanding NO2 selectivity to CO, methanol, ethanol, NH3 (all > 105), H2, CH4, acetone (all > 104), formaldehyde (>103), and H2S (835) was achieved. Such thickness-optimized and porous WO3 films have strong potential for integration into low-power devices for distributed NO2 air quality monitoring.
Collapse
Affiliation(s)
| | | | | | - Sotiris E. Pratsinis
- Particle Technology Laboratory, ETH Zurich, Sonneggstrasse 3, CH-8006 Zurich, Switzerland; (S.A.); (D.K.C.); (A.T.G.)
| |
Collapse
|
25
|
A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. ACTA ACUST UNITED AC 2020; 1:351-354. [PMID: 37128092 DOI: 10.1038/s43016-020-0095-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Alcoholic drinks contaminated, either accidentally or deliberately, by methanol claimed at least 789 lives in 2019, mostly in Asia. Here, a palm-sized, multi-use sensor-smartphone system is presented for on-demand headspace analysis of beverages. The analyser quantified methanol concentrations in 89 pure and methanol-contaminated alcoholic drinks from 6 continents and performed accurately for 107 consecutive days. This device could help consumers, distillers, law-enforcing authorities and healthcare workers to easily screen methanol in alcoholic beverages.
Collapse
|