1
|
Amoako K, Ukita R, Cook KE. Antifouling Zwitterionic Polymer Coatings for Blood-Bearing Medical Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2994-3006. [PMID: 39871120 PMCID: PMC11823456 DOI: 10.1021/acs.langmuir.4c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Blood-bearing medical devices are essential for the delivery of critical care medicine and are often required to function for weeks to months. However, thrombus formation on their surfaces can lead to reduced device function and failure and expose patients to systemic thrombosis risks. While clinical anticoagulants reduce device related thrombosis, they also increase patient bleeding risk. The root cause of device thrombosis and inflammation is protein adsorption on the biomaterial surfaces of these devices. Protein adsorption activates the coagulation cascade and complement, and this, in turn, activates platelets and white blood cells. Surface modifications with zwitterionic polymers are particularly effective at reducing protein adsorption as well as conformational changes in proteins due to their hydrophilicity. Multiple coating strategies have been developed using carboxybetaine (CB), sulfobetaine (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterionic polymers applied to the metals and hydrophobic polymers that make up the bulk of blood-bearing medical devices. These coatings have been highly successful at creating large reductions in protein adsorption and platelet adhesion during studies on the order of hours on flat surfaces and at reducing thrombus formation for up to a few days in full medical devices. Future work needs to focus on their ability to limit inflammation, particularly during hemodialysis, and in providing anticoagulation on the order of weeks, particularly in artificial lungs.
Collapse
Affiliation(s)
- Kagya Amoako
- Department
of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Rei Ukita
- Department
of Cardiac Surgery, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Keith E. Cook
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Blauvelt D, Roy S. What is the feasibility of a clinical-scale and anticoagulation-free artificial placenta device? Expert Rev Med Devices 2024; 21:983-986. [PMID: 39607047 DOI: 10.1080/17434440.2024.2419963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Affiliation(s)
- David Blauvelt
- Division of Critical Care Medicine, Nemours Children's Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shuvo Roy
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Goh T, Gao L, Singh J, Totaro R, Carey R, Yang K, Cartwright B, Dennis M, Ju LA, Waterhouse A. Platelet Adhesion and Activation in an ECMO Thrombosis-on-a-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401524. [PMID: 38757670 PMCID: PMC11321669 DOI: 10.1002/advs.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Indexed: 05/18/2024]
Abstract
Use of extracorporeal membrane oxygenation (ECMO) for cardiorespiratory failure remains complicated by blood clot formation (thrombosis), triggered by biomaterial surfaces and flow conditions. Thrombosis may result in ECMO circuit changes, cause red blood cell hemolysis, and thromboembolic events. Medical device thrombosis is potentiated by the interplay between biomaterial properties, hemodynamic flow conditions and patient pathology, however, the contribution and importance of these factors are poorly understood because many in vitro models lack the capability to customize material and flow conditions to investigate thrombosis under clinically relevant medical device conditions. Therefore, an ECMO thrombosis-on-a-chip model is developed that enables highly customizable biomaterial and flow combinations to evaluate ECMO thrombosis in real-time with low blood volume. It is observed that low flow rates, decelerating conditions, and flow stasis significantly increased platelet adhesion, correlating with clinical thrombus formation. For the first time, it is found that tubing material, polyvinyl chloride, caused increased platelet P-selectin activation compared to connector material, polycarbonate. This ECMO thrombosis-on-a-chip model can be used to guide ECMO operation, inform medical device design, investigate embolism, occlusion and platelet activation mechanisms, and develop anti-thrombotic biomaterials to ultimately reduce medical device thrombosis, anti-thrombotic drug use and therefore bleeding complications, leading to safer blood-contacting medical devices.
Collapse
Affiliation(s)
- Tiffany Goh
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| | - Lingzi Gao
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| | - Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| | - Richard Totaro
- Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Intensive Care DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Ruaidhri Carey
- Intensive Care DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Kevin Yang
- Intensive Care DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Bruce Cartwright
- Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Anaesthetics DepartmentRoyal Prince Alfred HospitalCamperdownSydneyNSW2050Australia
| | - Mark Dennis
- Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Cardiology DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Lining Arnold Ju
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringFaculty of EngineeringThe University of SydneyDarlingtonNSW2008Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
4
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
5
|
Saraei N, Dabaghi M, Fusch G, Rochow N, Fusch C, Selvaganapathy PR. Scaled-up Microfluidic Lung Assist Device for Artificial Placenta Application with High Gas Exchange Capacity. ACS Biomater Sci Eng 2024; 10:4612-4625. [PMID: 38904210 DOI: 10.1021/acsbiomaterials.3c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Premature neonates with underdeveloped lungs experience respiratory issues and need respiratory support, such as mechanical ventilation or extracorporeal membrane oxygenation (ECMO). The "artificial placenta" (AP) is a noninvasive approach that supports their lungs and reduces respiratory distress, using a pumpless oxygenator connected to the systemic circulation, and can address some of the morbidity issues associated with ECMO. Over the past decade, microfluidic blood oxygenators have garnered significant interest for their ability to mimic physiological conditions and incorporate innovative biomimetic designs. Achieving sufficient gas transfer at a low enough pressure drop for a pumpless operation without requiring a large volume of blood to prime such an oxygenator has been the main challenge with microfluidic lung assist devices (LAD). In this study, we improved the gas exchange capacity of our microfluidic-based artificial placenta-type LAD while reducing its priming volume by using a modified fabrication process that can accommodate large-area thin film microfluidic blood oxygenator (MBO) fabrication with a very high gas exchange surface. Additionally, we demonstrate the effectiveness of a LAD assembled by using these scaled-up MBOs. The LAD based on our artificial placenta concept effectively increases oxygen saturation levels by 30% at a flow rate of 40 mL/min and a pressure drop of 23 mmHg in room air, which is sufficient to support partial oxygenation for 1 kg preterm neonates in respiratory distress. When the gas ambient environment was changed to pure oxygen at atmospheric pressure, the LAD would be able to support premature neonates weighing up to 2 kg. Furthermore, our experiments reveal that the LAD can handle high blood flow rates of up to 150 mL/min and increase oxygen saturation levels by ∼20%, which is equal to an oxygen transfer of 7.48 mL/min in an enriched oxygen environment and among the highest for microfluidic AP type devices. Such performance makes this LAD suitable for providing essential support to 1-2 kg neonates in respiratory distress.
Collapse
Affiliation(s)
| | | | | | - Niels Rochow
- Nuremberg Department of Pediatrics, Paracelsus Medical University, University Hospital, Nuremberg 90419, Germany
| | - Christoph Fusch
- Nuremberg Department of Pediatrics, Paracelsus Medical University, University Hospital, Nuremberg 90419, Germany
| | | |
Collapse
|
6
|
Roberts TR, Persello A, Harea GT, Vedula EM, Isenberg BC, Zang Y, Santos J, Borenstein JT, Batchinsky AI. First 24-Hour-Long Intensive Care Unit Testing of a Clinical-Scale Microfluidic Oxygenator in Swine: A Safety and Feasibility Study. ASAIO J 2024; 70:535-544. [PMID: 38165978 DOI: 10.1097/mat.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group). The objective was to assess feasibility, safety, and biocompatibility. Circuits remained patent and operated with stable pressures throughout 24 hours. No group differences in vital signs or evidence of end-organ damage occurred. No change in plasma free hemoglobin and von Willebrand factor multimer size distribution were observed. Platelet count decreased in BLOx at 6 hours (37% dec, P = 0.03), but not in HFMO; however, thrombin generation potential was elevated in HFMO (596 ± 81 nM·min) versus BLOx (323 ± 39 nM·min) at 24 hours ( P = 0.04). Other coagulation and inflammatory mediator results were unremarkable. BLOx required higher mechanical ventilator settings and showed lower gas transfer efficiency versus HFMO, but the stable device performance indicates that this technology is ready for further performance scaling and testing in lung injury models and during longer use conditions.
Collapse
Affiliation(s)
- Teryn R Roberts
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Antoine Persello
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - George T Harea
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Else M Vedula
- Bioengineering Division, Draper, Cambridge, Massachusetts
| | | | - Yanyi Zang
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Jose Santos
- Bioengineering Division, Draper, Cambridge, Massachusetts
| | | | - Andriy I Batchinsky
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| |
Collapse
|
7
|
Xie X, Zhao Z, Wu Q. Current Status and Trends in Lung Transplant Research Funded by the National Natural Science Foundation of China. EXP CLIN TRANSPLANT 2023; 21:893-900. [PMID: 38140933 DOI: 10.6002/ect.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
OBJECTIVES This study aimed to analyze research projects on lung transplant funded by the National Natural Science Foundation of China from 1986 to 2022 and to provide a scientific reference for lung transplant research. MATERIALS AND METHODS We identified research hotspots and frontiers in the field of lung transplant research using CiteSpace visualization. RESULTS From 1986 to 2022, the National Natural Science Foundation of China funded 93 projects related to lung transplant, with an average of 2.51 projects and ¥0.94 million annually. The National Natural Science Foundation of China funded 30 institutions across 20 provinces, with general and youth science foundation projects comprising 45.16% and 41.93% of the total projects, respectively. The main categories of disciplines included H0113 respiratory intervention, tracheal reconstruction, and lung transplantation; H1105 organ transplantation and transplant immunization; and H0109 acute lung injury and acute respiratory distress syndrome. The research hotspots mainly included ischemia-reperfusion injury, gene regulation, obliterative bronchiolitis, rejection reaction, T cells, and stem cells. The 6 main research clusters were ischemia-reperfusion injury, immune tolerance, obliterative bronchiolitis, stem cells, pulmonary fibrosis, and rejection reaction. The main key word bursts in the past 5 years were "vein endothelial" and "ex vivo lung perfusion." CONCLUSIONS In the past 37 years, National Natural Science Foundation of China-funded projects have significantly advanced the clinical application and basic research of lung transplantation. However, compared with developed countries and other solidorgan transplantations, several problems still require attention and improvements in lung transplant research in China.
Collapse
Affiliation(s)
- Xianyu Xie
- From the Department of Medical Administration, Fujian Medical University Union Hospital, Fuzhou CitY, China
| | | | | |
Collapse
|
8
|
Setty AA, Chiang TY, Santos JA, Isenberg BC, Vedula EM, Keating RA, Sutherland DW, Borenstein JT. Toward microfluidic integration of respiratory and renal organ support in a single cartridge. Artif Organs 2023; 47:1442-1451. [PMID: 37376726 DOI: 10.1111/aor.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Extracorporeal organ assist devices provide lifesaving functions for acutely and chronically ill patients suffering from respiratory and renal failure, but their availability and use is severely limited by an extremely high level of operational complexity. While current hollow fiber-based devices provide high-efficiency blood gas transfer and waste removal in extracorporeal membrane oxygenation (ECMO) and hemodialysis, respectively, their impact on blood health is often highly deleterious and difficult to control. Further challenges are encountered when integrating multiple organ support functions, as is often required when ECMO and ultrafiltration (UF) are combined to deal with fluid overload in critically ill patients, necessitating an unwieldy circuit containing two separate cartridges. METHODS We report the first laboratory demonstration of simultaneous blood gas oxygenation and fluid removal in single microfluidic circuit, an achievement enabled by the microchannel-based blood flow configuration of the device. Porcine blood is flowed through a stack of two microfluidic layers, one with a non-porous, gas-permeable silicone membrane separating blood and oxygen chambers, and the other containing a porous dialysis membrane separating blood and filtrate compartments. RESULTS High levels of oxygen transfer are measured across the oxygenator, while tunable rates of fluid removal, governed by the transmembrane pressure (TMP), are achieved across the UF layer. Key parameters including the blood flow rate, TMP and hematocrit are monitored and compared with computationally predicted performance metrics. CONCLUSIONS These results represent a model demonstration of a potential future clinical therapy where respiratory support and fluid removal are both realized through a single monolithic cartridge.
Collapse
Affiliation(s)
- Aakash A Setty
- Bioengineering Division, Draper, Cambridge, Massachusetts, USA
| | - Tzu Y Chiang
- Bioengineering Division, Draper, Cambridge, Massachusetts, USA
| | - Jose A Santos
- Bioengineering Division, Draper, Cambridge, Massachusetts, USA
| | | | - Else M Vedula
- Bioengineering Division, Draper, Cambridge, Massachusetts, USA
| | - Rose A Keating
- Bioengineering Division, Draper, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
9
|
Isenberg BC, Vedula EM, Santos J, Lewis DJ, Roberts TR, Harea G, Sutherland D, Landis B, Blumenstiel S, Urban J, Lang D, Teece B, Lai W, Keating R, Chiang D, Batchinsky AI, Borenstein JT. A Clinical-Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207455. [PMID: 37092588 PMCID: PMC10288269 DOI: 10.1002/advs.202207455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.
Collapse
Affiliation(s)
| | | | - Jose Santos
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | - George Harea
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | | - Beau Landis
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Joseph Urban
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Daniel Lang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Bryan Teece
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - WeiXuan Lai
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Rose Keating
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Diana Chiang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | |
Collapse
|
10
|
Zhou Q, Schirrmann K, Doman E, Chen Q, Singh N, Selvaganapathy PR, Bernabeu MO, Jensen OE, Juel A, Chernyavsky IL, Krüger T. Red blood cell dynamics in extravascular biological tissues modelled as canonical disordered porous media. Interface Focus 2022; 12:20220037. [PMID: 36325194 PMCID: PMC9560785 DOI: 10.1098/rsfs.2022.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 12/17/2022] Open
Abstract
The dynamics of blood flow in the smallest vessels and passages of the human body, where the cellular character of blood becomes prominent, plays a dominant role in the transport and exchange of solutes. Recent studies have revealed that the microhaemodynamics of a vascular network is underpinned by its interconnected structure, and certain structural alterations such as capillary dilation and blockage can substantially change blood flow patterns. However, for extravascular media with disordered microstructure (e.g. the porous intervillous space in the placenta), it remains unclear how the medium's structure affects the haemodynamics. Here, we simulate cellular blood flow in simple models of canonical porous media representative of extravascular biological tissue, with corroborative microfluidic experiments performed for validation purposes. For the media considered here, we observe three main effects: first, the relative apparent viscosity of blood increases with the structural disorder of the medium; second, the presence of red blood cells (RBCs) dynamically alters the flow distribution in the medium; third, symmetry breaking introduced by moderate structural disorder can promote more homogeneous distribution of RBCs. Our findings contribute to a better understanding of the cell-scale haemodynamics that mediates the relationship linking the function of certain biological tissues to their microstructure.
Collapse
Affiliation(s)
- Qi Zhou
- School of Engineering, Institute for Multiscale Thermofluids, Edinburgh, UK
| | - Kerstin Schirrmann
- Manchester Centre for Nonlinear Dynamics, Manchester, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Eleanor Doman
- Department of Mathematics, The University of Manchester, Manchester, UK
| | - Qi Chen
- Manchester Centre for Nonlinear Dynamics, Manchester, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Naval Singh
- Manchester Centre for Nonlinear Dynamics, Manchester, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - P. Ravi Selvaganapathy
- Department of Mechanical Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Canada
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Oliver E. Jensen
- Department of Mathematics, The University of Manchester, Manchester, UK
| | - Anne Juel
- Manchester Centre for Nonlinear Dynamics, Manchester, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Igor L. Chernyavsky
- Department of Mathematics, The University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, Edinburgh, UK
| |
Collapse
|
11
|
Sutherland DW, McEleney A, de Almeida M, Kajimoto M, Ventura G, Isenberg BC, Portman MA, Stapleton SE, Williams C. Characterization of main pulmonary artery and valve annulus region of piglets using echocardiography, uniaxial tensile testing, and a novel non-destructive technique. Front Cardiovasc Med 2022; 9:884116. [PMID: 36093160 PMCID: PMC9459108 DOI: 10.3389/fcvm.2022.884116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Characterization of cardiovascular tissue geometry and mechanical properties of large animal models is essential when developing cardiovascular devices such as heart valve replacements. These datasets are especially critical when designing devices for pediatric patient populations, as there is often limited data for guidance. Here, we present a previously unavailable dataset capturing anatomical measurements and mechanical properties of juvenile Yorkshire (YO) and Yucatan (YU) porcine main pulmonary artery (PA) and pulmonary valve (PV) tissue regions that will inform pediatric heart valve design requirements for preclinical animal studies. In addition, we developed a novel radial balloon catheter-based method to measure tissue stiffness and validated it against a traditional uniaxial tensile testing method. YU piglets, which were significantly lower weight than YO counterparts despite similar age, had smaller PA and PV diameters (7.6-9.9 mm vs. 10.1-12.8 mm). Young's modulus (stiffness) was measured for the PA and the PV region using both the radial and uniaxial testing methods. There was no significant difference between the two breeds for Young's modulus measured in the elastic (YU PA 84.7 ± 37.3 kPa, YO PA 79.3 ± 15.7 kPa) and fibrous regimes (YU PA 308.6 ± 59.4 kPa, YO PA 355.7 ± 68.9 kPa) of the stress-strain curves. The two testing techniques also produced similar stiffness measurements for the PA and PV region, although PV data showed greater variation between techniques. Overall, YU and YO piglets had similar PA and PV diameters and tissue stiffness to previously reported infant pediatric patients. These results provide a previously unavailable age-specific juvenile porcine tissue geometry and stiffness dataset critical to the development of pediatric cardiovascular prostheses. Additionally, the data demonstrates the efficacy of a novel balloon catheter-based technique that could be adapted to non-destructively measure tissue stiffness in situ.
Collapse
Affiliation(s)
- David W. Sutherland
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Aisling McEleney
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Matheus de Almeida
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Masaki Kajimoto
- Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, WA, United States
| | - Giselle Ventura
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Michael A. Portman
- Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, WA, United States
| | - Scott E. Stapleton
- Department of Mechanical Engineering, University of Massachusetts, Lowell, MA, United States
| | - Corin Williams
- Bioengineering Division, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| |
Collapse
|
12
|
Astor TL, Borenstein JT. The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artif Organs 2022; 46:1227-1239. [PMID: 35514275 DOI: 10.1111/aor.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
The increasing prevalence of chronic lung disease worldwide, combined with the emergence of multiple pandemics arising from respiratory viruses over the past century, highlights the need for safer and efficacious means for providing artificial lung support. Mechanical ventilation is currently used for the vast majority of patients suffering from acute and chronic lung failure, but risks further injury or infection to the patient's already compromised lung function. Extracorporeal membrane oxygenation (ECMO) has emerged as a means of providing direct gas exchange with the blood, but limited access to the technology and the complexity of the blood circuit have prevented the broader expansion of its use. A promising avenue toward simplifying and minimizing complications arising from the blood circuit, microfluidics-based artificial organ support, has emerged over the past decade as an opportunity to overcome many of the fundamental limitations of the current standard for ECMO cartridges, hollow fiber membrane oxygenators. The power of microfluidics technology for this application stems from its ability to recapitulate key aspects of physiological microcirculation, including the small dimensions of blood vessel structures and gas transfer membranes. An even greater advantage of microfluidics, the ability to configure blood flow patterns that mimic the smooth, branching nature of vascular networks, holds the potential to reduce the incidence of clotting and bleeding and to minimize reliance on anticoagulants. Here, we summarize recent progress and address future directions and goals for this potentially transformative approach to artificial lung support.
Collapse
Affiliation(s)
- Todd L Astor
- Biomembretics, Inc., Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
13
|
Micro-haemodynamics at the maternal–fetal interface: experimental, theoretical and clinical perspectives. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Santos JA, Gimbel AA, Peppas A, Truslow JG, Lang DA, Sukavaneshvar S, Solt D, Mulhern TJ, Markoski A, Kim ES, Hsiao JCM, Lewis DJ, Harjes DI, DiBiasio C, Charest JL, Borenstein JT. Design and construction of three-dimensional physiologically-based vascular branching networks for respiratory assist devices. LAB ON A CHIP 2021; 21:4637-4651. [PMID: 34730597 DOI: 10.1039/d1lc00287b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic lab-on-a-chip devices are changing the way that in vitro diagnostics and drug development are conducted, based on the increased precision, miniaturization and efficiency of these systems relative to prior methods. However, the full potential of microfluidics as a platform for therapeutic medical devices such as extracorporeal organ support has not been realized, in part due to limitations in the ability to scale current designs and fabrication techniques toward clinically relevant rates of blood flow. Here we report on a method for designing and fabricating microfluidic devices supporting blood flow rates per layer greater than 10 mL min-1 for respiratory support applications, leveraging advances in precision machining to generate fully three-dimensional physiologically-based branching microchannel networks. The ability of precision machining to create molds with rounded features and smoothly varying channel widths and depths distinguishes the geometry of the microchannel networks described here from all previous reports of microfluidic respiratory assist devices, regarding the ability to mimic vascular blood flow patterns. These devices have been assembled and tested in the laboratory using whole bovine or porcine blood, and in a porcine model to demonstrate efficient gas transfer, blood flow and pressure stability over periods of several hours. This new approach to fabricating and scaling microfluidic devices has the potential to address wide applications in critical care for end-stage organ failure and acute illnesses stemming from respiratory viral infections, traumatic injuries and sepsis.
Collapse
Affiliation(s)
- Jose A Santos
- Bioengineering Division, Draper, Cambridge, MA, USA.
| | - Alla A Gimbel
- Bioengineering Division, Draper, Cambridge, MA, USA.
| | | | | | - Daniel A Lang
- Bioengineering Division, Draper, Cambridge, MA, USA.
| | | | | | | | - Alex Markoski
- Bioengineering Division, Draper, Cambridge, MA, USA.
| | - Ernest S Kim
- Bioengineering Division, Draper, Cambridge, MA, USA.
| | | | - Diana J Lewis
- Bioengineering Division, Draper, Cambridge, MA, USA.
| | | | | | | | | |
Collapse
|
15
|
Santos J, Vedula EM, Lai W, Isenberg BC, Lewis DJ, Lang D, Sutherland D, Roberts TR, Harea GT, Wells C, Teece B, Karandikar P, Urban J, Risoleo T, Gimbel A, Solt D, Leazer S, Chung KK, Sukavaneshvar S, Batchinsky AI, Borenstein JT. Toward Development of a Higher Flow Rate Hemocompatible Biomimetic Microfluidic Blood Oxygenator. MICROMACHINES 2021; 12:888. [PMID: 34442512 PMCID: PMC8398684 DOI: 10.3390/mi12080888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
The recent emergence of microfluidic extracorporeal lung support technologies presents an opportunity to achieve high gas transfer efficiency and improved hemocompatibility relative to the current standard of care in extracorporeal membrane oxygenation (ECMO). However, a critical challenge in the field is the ability to scale these devices to clinically relevant blood flow rates, in part because the typically very low blood flow in a single layer of a microfluidic oxygenator device requires stacking of a logistically challenging number of layers. We have developed biomimetic microfluidic oxygenators for the past decade and report here on the development of a high-flow (30 mL/min) single-layer prototype, scalable to larger structures via stacking and assembly with blood distribution manifolds. Microfluidic oxygenators were designed with biomimetic in-layer blood distribution manifolds and arrays of parallel transfer channels, and were fabricated using high precision machined durable metal master molds and microreplication with silicone films, resulting in large area gas transfer devices. Oxygen transfer was evaluated by flowing 100% O2 at 100 mL/min and blood at 0-30 mL/min while monitoring increases in O2 partial pressures in the blood. This design resulted in an oxygen saturation increase from 65% to 95% at 20 mL/min and operation up to 30 mL/min in multiple devices, the highest value yet recorded in a single layer microfluidic device. In addition to evaluation of the device for blood oxygenation, a 6-h in vitro hemocompatibility test was conducted on devices (n = 5) at a 25 mL/min blood flow rate with heparinized swine donor blood against control circuits (n = 3). Initial hemocompatibility results indicate that this technology has the potential to benefit future applications in extracorporeal lung support technologies for acute lung injury.
Collapse
Affiliation(s)
- Jose Santos
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Else M. Vedula
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Weixuan Lai
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Brett C. Isenberg
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Diana J. Lewis
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Dan Lang
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - David Sutherland
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - George T. Harea
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - Christian Wells
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Bryan Teece
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Paramesh Karandikar
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Joseph Urban
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Thomas Risoleo
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Alla Gimbel
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Derek Solt
- Thrombodyne, Inc., Salt Lake City, UT 84103, USA; (D.S.); (S.S.)
| | - Sahar Leazer
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.L.); (K.K.C.)
| | - Kevin K. Chung
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.L.); (K.K.C.)
| | | | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - Jeffrey T. Borenstein
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| |
Collapse
|
16
|
Wang L, Li F, Feng Z, Shi Y. Comment on "A Pumpless Microfluidic Neonatal Lung Assist Device for Support of Preterm Neonates in Respiratory Distress". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004382. [PMID: 34194930 PMCID: PMC8224411 DOI: 10.1002/advs.202004382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/24/2020] [Indexed: 06/13/2023]
Affiliation(s)
- Li Wang
- Department of Pediatrics University-Town Hospital of Chongqing Medical University Chongqing 401331 China
- Department of Pediatrics Daping Hospital Army Medical University Chongqing 400042 China
| | - Fang Li
- Department of Neonatology Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Children's Hospital of Chongqing Medical University Chongqing Key Laboratory of Pediatrics Chongqing 400014 China
| | - Zhichun Feng
- Affiliated BaYi Children's Hospital General Hospital of the People's Liberation Army Beijing 100007 China
| | - Yuan Shi
- Department of Neonatology Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Children's Hospital of Chongqing Medical University Chongqing Key Laboratory of Pediatrics Chongqing 400014 China
| |
Collapse
|