1
|
Ren X, Bloomfield‐Gadêlha H. Swimming by Spinning: Spinning-Top Type Rotations Regularize Sperm Swimming Into Persistently Progressive Paths in 3D. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406143. [PMID: 39696833 PMCID: PMC11809349 DOI: 10.1002/advs.202406143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Indexed: 12/20/2024]
Abstract
Sperm swimming is essential for reproduction, with movement strategies adapted to specific environments. Sperm navigate by modulating the symmetry of their flagellar beating, but how they swim forward with asymmetrical beats remains unclear. Current methods lack the ability to robustly detect the flagellar symmetry state in free-swimming spermatozoa, despite its importance in understanding sperm motility. This study uses numerical simulations to investigate the fluid mechanics of sperm swimming with asymmetrical flagellar beats. Results show that sperm rotation regularizes the swimming motion, allowing persistently progressive swimming even with asymmetrical flagellar beats. Crucially, 3D sperm head orientation, rather than the swimming path, provides critical insight into the flagellar symmetry state. Sperm rotations during swimming closely resemble spinning-top dynamics, with sperm head precession driven by the helical beating of the flagellum. These results may prove essential in future studies on the role of symmetry in microorganisms and artificial swimmers, as body orientation detection has been largely overlooked in favor of swimming path analysis. Altogether, this rotational mechanism provides a reliable solution for forward propulsion and navigation in nature, which would otherwise be challenging for flagella with broken symmetry.
Collapse
Affiliation(s)
- Xiaomeng Ren
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| | - Hermes Bloomfield‐Gadêlha
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| |
Collapse
|
2
|
Jia L, Su G, Zhang M, Wen Q, Wang L, Li J. Propulsion Mechanisms in Magnetic Microrobotics: From Single Microrobots to Swarms. MICROMACHINES 2025; 16:181. [PMID: 40047696 PMCID: PMC11857472 DOI: 10.3390/mi16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
Microrobots with different structures can exhibit multiple propulsion mechanisms under external magnetic fields. Swarms dynamically assembled by microrobots inherit the advantages of single microrobots, such as degradability and small dimensions, while also offering benefits like scalability and high flexibility. With control of magnetic fields, these swarms demonstrate diverse propulsion mechanisms and can perform precise actions in complex environments. Therefore, the relationship between single microrobots and their swarms is a significant area of study. This paper reviews the relationship between single microrobots and swarms by examining the structural design, control methods, propulsion mechanisms, and practical applications. At first, we introduce the structural design of microrobots, including materials and manufacturing methods. Then, we describe magnetic field generation systems, including gradient, rotating, and oscillating magnetic fields, and their characteristics. Next, we analyze the propulsion mechanisms of individual microrobots and the way microrobots dynamically assemble into a swarm under an external magnetic field, which illustrates the relationship between single microrobots and swarms. Finally, we discuss the application of different swarm propulsion mechanisms in water purification and targeted delivery, summarize current challenges and future work, and explore future directions.
Collapse
Affiliation(s)
| | | | | | - Qi Wen
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Lihong Wang
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| |
Collapse
|
3
|
Striggow F, Ribeiro C, Aziz A, Nauber R, Hebenstreit F, Schmidt OG, Medina-Sánchez M. Magnetotactic Sperm Cells for Assisted Reproduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310288. [PMID: 38150615 DOI: 10.1002/smll.202310288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Indexed: 12/29/2023]
Abstract
Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.
Collapse
Affiliation(s)
- Friedrich Striggow
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Carla Ribeiro
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Richard Nauber
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Franziska Hebenstreit
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
4
|
García‐Vázquez FA, Garrappa G, Luongo C, Hamze JG, Caballero M, Marco‐Jiménez F, Vicente Antón JS, Molina‐Cuberos GJ, Jiménez‐Movilla M. Magnetic-Assisted Control of Eggs and Embryos via Zona Pellucida-Linked Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306901. [PMID: 38447155 PMCID: PMC11095233 DOI: 10.1002/advs.202306901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Eggs and embryo manipulation is an important biotechnological challenge to enable positioning, entrapment, and selection of reproductive cells to advance into a new era of nature-like assisted reproductive technologies. Oviductin (OVGP1) is an abundant protein in the oviduct that binds reversibly to the zona pellucida, an extracellular matrix that surrounds eggs and embryos. Here, the study reports a new method coupling OVGP1 to magnetic nanoparticles (NP) forming a complex (NPOv). NPOv specifically surrounds eggs and embryos in a reversible manner. Eggs/embryos bound to NPOv can be moved or retained when subjected to a magnetic force, and interestingly only mature-competent eggs are attracted. This procedure is compatible with normal development following gametes function, in vitro fertilization, embryo development and resulting in the birth of healthy offspring. The results provide in vitro proof-of-concept that eggs and embryos can be precisely guided in the absence of physical contact by the use of magnets.
Collapse
Affiliation(s)
- Francisco Alberto García‐Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
| | - Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
- Insitituto Nacional de Tecnología Agropecuaria (INTA)RafaelaSanta Fe2300Argentina
| | - Chiara Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
| | - Julieta Gabriela Hamze
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - María Caballero
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - Francisco Marco‐Jiménez
- Instituto de Ciencia y Tecnología AnimalUniversitat Politècnica de ValènciaValencia46022Spain
| | | | - Gregorio J. Molina‐Cuberos
- Departamento de Electromagnetismo y Electrónica, Facultad de QuímicaUniversidad de MurciaMurcia30100Spain
| | - María Jiménez‐Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| |
Collapse
|
5
|
Zhang Q, Zeng Y, Zhao Y, Peng X, Ren E, Liu G. Bio-Hybrid Magnetic Robots: From Bioengineering to Targeted Therapy. Bioengineering (Basel) 2024; 11:311. [PMID: 38671732 PMCID: PMC11047666 DOI: 10.3390/bioengineering11040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic robots possess an innate ability to navigate through hard-to-reach cavities in the human body, making them promising tools for diagnosing and treating diseases minimally invasively. Despite significant advances, the development of robots with desirable locomotion and full biocompatibility under harsh physiological conditions remains challenging, which put forward new requirements for magnetic robots' design and material synthesis. Compared to robots that are synthesized with inorganic materials, natural organisms like cells, bacteria or other microalgae exhibit ideal properties for in vivo applications, such as biocompatibility, deformability, auto-fluorescence, and self-propulsion, as well as easy for functional therapeutics engineering. In the process, these organisms can provide autonomous propulsion in biological fluids or external magnetic fields, while retaining their functionalities with integrating artificial robots, thus aiding targeted therapeutic delivery. This kind of robotics is named bio-hybrid magnetic robotics, and in this mini-review, recent progress including their design, engineering and potential for therapeutics delivery will be discussed. Additionally, the historical context and prominent examples will be introduced, and the complexities, potential pitfalls, and opportunities associated with bio-hybrid magnetic robotics will be discussed.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Yun Zeng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yang Zhao
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Xuqi Peng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - En Ren
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- Key Laboratory of Advanced Drug Delivery Systems, Zhejiang Province College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Tian Z, Xue J, Xiao X, Du C, Liu Y. Optomagnetic Coordination Helical Robot with Shape Transformation and Multimodal Motion Capabilities. NANO LETTERS 2024; 24:2885-2893. [PMID: 38407034 DOI: 10.1021/acs.nanolett.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Xinze Xiao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai, 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
7
|
Xiong J, Li X, He Z, Shi Y, Pan T, Zhu G, Lu D, Xin H. Light-controlled soft bio-microrobot. LIGHT, SCIENCE & APPLICATIONS 2024; 13:55. [PMID: 38403642 PMCID: PMC10894875 DOI: 10.1038/s41377-024-01405-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Micro/nanorobots hold exciting prospects for biomedical and even clinical applications due to their small size and high controllability. However, it is still a big challenge to maneuver micro/nanorobots into narrow spaces with high deformability and adaptability to perform complicated biomedical tasks. Here, we report a light-controlled soft bio-microrobots (called "Ebot") based on Euglena gracilis that are capable of performing multiple tasks in narrow microenvironments including intestinal mucosa with high controllability, deformability and adaptability. The motion of the Ebot can be precisely navigated via light-controlled polygonal flagellum beating. Moreover, the Ebot shows highly controlled deformability with different light illumination duration, which allows it to pass through narrow and curved microchannels with high adaptability. With these features, Ebots are able to execute multiple tasks, such as targeted drug delivery, selective removal of diseased cells in intestinal mucosa, as well as photodynamic therapy. This light-controlled Ebot provides a new bio-microrobotic tool, with many new possibilities for biomedical task execution in narrow and complicated spaces where conventional tools are difficult to access due to the lack of deformability and bio-adaptability.
Collapse
Affiliation(s)
- Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Dengyun Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
8
|
Pu R, Yang X, Mu H, Xu Z, He J. Current status and future application of electrically controlled micro/nanorobots in biomedicine. Front Bioeng Biotechnol 2024; 12:1353660. [PMID: 38314349 PMCID: PMC10834684 DOI: 10.3389/fbioe.2024.1353660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.
Collapse
Affiliation(s)
- Ruochen Pu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiyu Yang
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Xu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin He
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Lv Y, Pu R, Tao Y, Yang X, Mu H, Wang H, Sun W. Applications and Future Prospects of Micro/Nanorobots Utilizing Diverse Biological Carriers. MICROMACHINES 2023; 14:mi14050983. [PMID: 37241607 DOI: 10.3390/mi14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Targeted drug delivery using micro-nano robots (MNRs) is a rapidly advancing and promising field in biomedical research. MNRs enable precise delivery of drugs, addressing a wide range of healthcare needs. However, the application of MNRs in vivo is limited by power issues and specificity in different scenarios. Additionally, the controllability and biological safety of MNRs must be considered. To overcome these challenges, researchers have developed bio-hybrid micro-nano motors that offer improved accuracy, effectiveness, and safety for targeted therapies. These bio-hybrid micro-nano motors/robots (BMNRs) use a variety of biological carriers, blending the benefits of artificial materials with the unique features of different biological carriers to create tailored functions for specific needs. This review aims to give an overview of the current progress and application of MNRs with various biocarriers, while exploring the characteristics, advantages, and potential hurdles for future development of these bio-carrier MNRs.
Collapse
Affiliation(s)
- Yu Lv
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruochen Pu
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yining Tao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
11
|
Wang Z, Klingner A, Magdanz V, Hoppenreijs MW, Misra S, Khalil ISM. Flagellar Propulsion of Sperm Cells Against a Time-Periodic Interaction Force. Adv Biol (Weinh) 2023; 7:e2200210. [PMID: 36266967 DOI: 10.1002/adbi.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/03/2022] [Indexed: 01/20/2023]
Abstract
Sperm cells undergo complex interactions with external environments, such as a solid-boundary, fluid flow, as well as other cells before arriving at the fertilization site. The interaction with the oviductal epithelium, as a site of sperm storage, is one type of cell-to-cell interaction that serves as a selection mechanism. Abnormal sperm cells with poor swimming performance, the major cause of male infertility, are filtered out by this selection mechanism. In this study, collinear bundles, consisting of two sperm cells, generate propulsive thrusts along opposite directions and allow to observe the influence of cell-to-cell interaction on flagellar wave-patterns. The developed elasto-hydrodynamic model demonstrates that steric and adhesive forces lead to highly symmetrical wave-pattern and reduce the bending amplitude of the propagating wave. It is measured that the free cells exhibit a mean flagellar curvature of 6.4 ± 3.5 rad mm-1 and a bending amplitude of 13.8 ± 2.8 rad mm-1 . After forming the collinear bundle, the mean flagellar curvature and bending amplitude are decreased to 1.8 ± 1.1 and 9.6 ± 1.4 rad mm-1 , respectively. This study presents consistent theoretical and experimental results important for understanding the adaptive behavior of sperm cells to the external time-periodic force encountered during sperm-egg interaction.
Collapse
Affiliation(s)
- Zihan Wang
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Anke Klingner
- Department of Physics, The German University in Cairo, New Cairo, 13411, Egypt
| | - Veronika Magdanz
- Smart Nano-Bio-Devices Group, Institute for Bioengineering of Catalonia, 08028, Barcelona, Spain
- University of Waterloo, Systems Design Engineering, 200 University Avenue West Waterloo, Ontario N2L3G1, Canada
| | - Merijn W Hoppenreijs
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Islam S M Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
12
|
Webster-Wood VA, Guix M, Xu NW, Behkam B, Sato H, Sarkar D, Sanchez S, Shimizu M, Parker KK. Biohybrid robots: recent progress, challenges, and perspectives. BIOINSPIRATION & BIOMIMETICS 2022; 18:015001. [PMID: 36265472 DOI: 10.1088/1748-3190/ac9c3b] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Mechanical Engineering, Biomedical Engineering (by courtesy), McGowan Institute of Regenerative Medicine, Carnegie Mellon University, Pittsburgh, PA 15116, United States of America
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nicole W Xu
- Laboratories for Computational Physics and Fluid Dynamics, U.S. Naval Research Laboratory, Code 6041, Washington, DC, United States of America
| | - Bahareh Behkam
- Department of Mechanical Engineering, Institute for Critical Technology and Applied Science, Blacksburg, VA 24061, United States of America
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona, Spain
| | - Masahiro Shimizu
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-machi, Toyonaka, Osaka, Japan
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
13
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
14
|
Middelhoek K, Magdanz V, Abelmann L, Khalil I. Drug-loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging. Biomed Mater 2022; 17. [PMID: 35985314 DOI: 10.1088/1748-605x/ac8b4b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into threedimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted delivery. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 hours. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.
Collapse
Affiliation(s)
- Kaz Middelhoek
- Biomechanical Engineering , University of Twente, University of Twente, Enschede, Enschede, 7500 AE, NETHERLANDS
| | - Veronika Magdanz
- Barcelona Institute of Science and Technology, Institute for Bioengineering in Catalonia, Barcelona, Barcelona, Catalunya, 08028, SPAIN
| | - Leon Abelmann
- MESA Research Institute, University of Twente, SMI, PO Box 217, 7500 AE Enschede, THE NETHERLANDS, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Islam Khalil
- Biomechanical Engineering , University of Twente, University of Twente, Enschede, Enschede, 7500 AE, NETHERLANDS
| |
Collapse
|
15
|
Noh S, Jeon S, Kim E, Oh U, Park D, Park SH, Kim SW, Pané S, Nelson BJ, Kim JY, Choi H. A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107888. [PMID: 35607749 DOI: 10.1002/smll.202107888] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
A great deal of research has focused on small-scale robots for biomedical applications and minimally invasive delivery of therapeutics (e.g., cells, drugs, and genes) to a target area. Conventional fabrication methods, such as two-photon polymerization, can be used to build sophisticated micro- and nanorobots, but the long fabrication cycle for a single microrobot has limited its practical use. This study proposes a biodegradable spherical gelatin methacrylate (GelMA) microrobot for mass production in a microfluidic channel. The proposed microrobot is fabricated in a flow-focusing droplet generator by shearing a mixture of GelMA, photoinitiator, and superparamagnetic iron oxide nanoparticles (SPIONs) with a mixture of oil and surfactant. Human nasal turbinate stem cells (hNTSCs) are loaded on the GelMA microrobot, and the hNTSC-loaded microrobot shows precise rolling motion in response to an external rotating magnetic field. The microrobot is enzymatically degraded by collagenase, and released hNTSCs are proliferated and differentiated into neuronal cells. In addition, the feasibility of the GelMA microrobot as a cell therapeutic delivery system is investigated by measuring electrophysiological activity on a multielectrode array. Such a versatile and fully biodegradable microrobot has the potential for targeted stem cell delivery, proliferation, and differentiation for stem cell-based therapy.
Collapse
Affiliation(s)
- Seungmin Noh
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | | | - Eunhee Kim
- IMsystem Co., Ltd., Daegu, 42988, Republic of Korea
| | - Untaek Oh
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Danbi Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University, Seoul, 06591, Republic of Korea
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jin-Young Kim
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Robotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
16
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
17
|
Cao X, Xuan S, Gao Y, Lou C, Deng H, Gong X. 3D Printing Ultraflexible Magnetic Actuators via Screw Extrusion Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200898. [PMID: 35347888 PMCID: PMC9165489 DOI: 10.1002/advs.202200898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Soft magnetic actuators with programmable structure design and controllable deformation ability based on 3D printing technology have attracted extensive attention. In this paper, a novel 3D printing strategy is developed to manufacture the ultraflexible magnetic actuator, in which the printed material is composed of magnetic particles and thermoplastic rubber materials. Different from the traditional fused deposition printing, this printing strategy introduces screw extrusion technology to the heating components of the printer to overcome the problem of filament buckling in the flexible material. Thus, the tensile modulus of the printed products can be reduced to as low as ≈2 MPa. Based on the above method, biomimetic magnetic actuators of the sucker and the pump are constructed for adhering and releasing object and pumping liquid. The contraction performance of the magnetic actuator is studied via a series of experiments and the magnetic field-induced deformation is analyzed by the multiphysics-based finite element model. This work proves that ultraflexible magnetic actuators fabricated by this 3D printing strategy show broad prospects in the fields of soft robotics and bionics.
Collapse
Affiliation(s)
- Xufeng Cao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yinduan Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Congcong Lou
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huaxia Deng
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
18
|
Micheal MM, Adel A, Kim CS, Park JO, Misra S, Khalil ISM. 2D Magnetic Actuation and Localization of a Surface Milli-Roller in Low Reynolds Numbers. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3148787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Mohanty S, Paul A, Matos PM, Zhang J, Sikorski J, Misra S. CeFlowBot: A Biomimetic Flow-Driven Microrobot that Navigates under Magneto-Acoustic Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105829. [PMID: 34889051 DOI: 10.1002/smll.202105829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Aquatic organisms within the Cephalopoda family (e.g., octopuses, squids, cuttlefish) exist that draw the surrounding fluid inside their bodies and expel it in a single jet thrust to swim forward. Like cephalopods, several acoustically powered microsystems share a similar process of fluid expulsion which makes them useful as microfluidic pumps in lab-on-a-chip devices. Herein, an array of acoustically resonant bubbles are employed to mimic this pumping phenomenon inside an untethered microrobot called CeFlowBot. CeFlowBot contains an array of vibrating bubbles that pump fluid through its inner body thereby boosting its propulsion. CeFlowBots are later functionalized with magnetic layers and steered under combined influence of magnetic and acoustic fields. Moreover, acoustic power modulation of CeFlowBots is used to grasp nearby objects and release it in the surrounding workspace. The ability of CeFlowBots to navigate remote environments under magneto-acoustic fields and perform targeted manipulation makes such microrobots useful for clinical applications such as targeted drug delivery. Lastly, an ultrasound imaging system is employed to visualize the motion of CeFlowBots which provides means to deploy such microrobots in hard-to-reach environments inaccessible to optical cameras.
Collapse
Affiliation(s)
- Sumit Mohanty
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Aniruddha Paul
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, 7522, The Netherlands
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Pedro M Matos
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Jiena Zhang
- Vascularization Lab, Department of Biomechanical Engineering, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Jakub Sikorski
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, NB, 7522, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, AV 9713, The Netherlands
| |
Collapse
|
20
|
Zhao J, Li X, Tan Y, Liu X, Lu T, Shi M. Smart Adhesives via Magnetic Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107748. [PMID: 34989048 DOI: 10.1002/adma.202107748] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Smart adhesives possess a wide range of applications owing to their reversibly and repeatedly switchable adhesion in transfer technology. Despite recent advances, it still remains a technical and scientific challenge to achieve strategies for rapidly tunable adhesion in a noncontact manner. In this study, a smart adhesive to achieve dynamically tunable adhesion is developed. Specifically, a mushroom-shaped adhesive with a magnetized tip is actuated to reversibly and rapidly transform the morphology via magnetic actuation. The smart adhesive has two working modes, namely, selective pickup mode and pick-and-place mode. In the selective pickup mode, the external magnetic field is applied and the tip undergoes bending deformation. Changes in tip morphology allow for a reversible switch of the adhesion between "turn on" and "turn off." In the pick-and-place mode, the external magnetic field is applied when the target object needs to be released. Upward bending deformation of the micro-beam, a part of the tip, creates an initial crack at the edge of the adhesion interface. The propagation of the edge crack modulates the adhesion from strong to weak and the target object is instantly released. The proposed smart adhesive may be of interest for practical applications demanding highly precise and swiftly controlled movements.
Collapse
Affiliation(s)
- Jinsheng Zhao
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiangyu Li
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yu Tan
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaokun Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Taiping Lu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Mingxing Shi
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
21
|
Dias JMS, Estima D, Punte H, Klingner A, Marques L, Magdanz V, Khalil ISM. Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle‐Coated Sperm Cells using Magnetic Excitation. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- João M. S. Dias
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
- Institute of Systems and Robotics University of Coimbra Coimbra 3030‐194 Portugal
| | - Daniel Estima
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| | - Harmen Punte
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| | - Anke Klingner
- Department of Physics The German University in Cairo Cairo 11835 Egypt
| | - Lino Marques
- Institute of Systems and Robotics University of Coimbra Coimbra 3030‐194 Portugal
| | - Veronika Magdanz
- Institute of Bioengineering of Catalonia Smart Nanobiodevices group Barcelona 08028 Spain
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| |
Collapse
|
22
|
Pané S, Wendel-Garcia P, Belce Y, Chen XZ, Puigmartí-Luis J. Powering and Fabrication of Small-Scale Robotics Systems. CURRENT ROBOTICS REPORTS 2022; 2:427-440. [PMID: 35036926 PMCID: PMC8721937 DOI: 10.1007/s43154-021-00066-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review The increasing number of contributions in the field of small-scale robotics is significantly associated with the progress in material science and process engineering during the last half century. With the objective of integrating the most optimal materials for the propulsion of these motile micro- and nanosystems, several manufacturing strategies have been adopted or specifically developed. This brief review covers some recent advances in materials and fabrication of small-scale robots with a focus on the materials serving as components for their motion and actuation. Recent Findings Integration of a wealth of materials is now possible in several micro- and nanorobotic designs owing to the advances in micro- and nanofabrication and chemical synthesis. Regarding light-driven swimmers, novel photocatalytic materials and deformable liquid crystal elastomers have been recently reported. Acoustic swimmers are also gaining attention, with several prominent examples of acoustic bubble-based 3D swimmers being recently reported. Magnetic micro- and nanorobots are increasingly investigated for their prospective use in biomedical applications. The adoption of different materials and novel fabrication strategies based on 3D printing, template-assisted electrodeposition, or electrospinning is briefly discussed. Summary A brief review on fabrication and powering of small-scale robotics is presented. First, a concise introduction to the world of small-scale robotics and their propulsion by means of magnetic fields, ultrasound, and light is provided. Recent examples of materials and fabrication methodologies for the realization of these devices follow thereafter.
Collapse
Affiliation(s)
- Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital of Zürich, Zürich, Switzerland
| | - Yonca Belce
- Departament de Ciència Dels Materials I Química Física, Institut de Química Teòrica I Computacional, 08028 Barcelona, Spain
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència Dels Materials I Química Física, Institut de Química Teòrica I Computacional, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021; 12:753686. [PMID: 34858208 PMCID: PMC8632065 DOI: 10.3389/fphys.2021.753686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexandra E Peters
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jessie M Sutherland
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|