1
|
Zhang Z, Dong Q, Li Z, Cheng G, Li Z. Bi-phasic integrated silk fibroin/polycaprolactone scaffolds for osteochondral regeneration inspired by the native joint tissue and interface. Mater Today Bio 2025; 32:101737. [PMID: 40275950 PMCID: PMC12018571 DOI: 10.1016/j.mtbio.2025.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
Osteochondral scaffolds designed with bi-phasic and multi-phasic have typically struggled with post-implantation delamination. To address this issue, we developed a novel integrated scaffold with natural and continuous interface and heterogeneous bilayer structure. Through layer-by-layer wet electrospinning, two-dimensional (2D) bi-layer integrated membranes of silk fibroin (SF) and polycaprolactone (PCL) were fabricated. These membranes were then transformed into three-dimensional (3D) scaffolds using a CO2 gas foaming technique, followed by gelatin coating on the osteogenic layer to afford final bi-phasic porous scaffolds. In vitro studies indicated that the 3D scaffolds better-maintained cell phenotypes than conventional 2D electrospun films. Additionally, the 3D scaffolds showed superior cartilage repair and osteoinductivity potential, with increased subchondral bone volume and reduced defect area in rat osteochondral defects models at 12 weeks. Taken together, these gas-foamed scaffolds were a promising candidate for osteochondral regeneration.
Collapse
Affiliation(s)
- Zexing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Qingquan Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zubing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Gu Cheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
3
|
Wang L, Chen X, Shi S, Yang X, Chen H, Xiao J. Advanced collagen-based scaffolds for cartilage and osteochondral regeneration: A review. Int J Biol Macromol 2025; 311:143992. [PMID: 40348245 DOI: 10.1016/j.ijbiomac.2025.143992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, presents a formidable challenge to human health due to its complex pathophysiology. Despite various clinical treatments, a definitive cure for OA remains elusive, leaving patients with only symptomatic relief. Tissue engineering has emerged as a promising approach for OA treatment, offering the potential to restore damaged cartilage and osteochondral tissues. Collagen-based scaffolds, renowned for their superior biocompatibility and bioactivity, hold significant potential in promoting effective cartilage and osteochondral regeneration. Over the past decades, substantial progress has been made in the design and clinical translation of collagen-based scaffolds for cartilage and osteochondral tissue engineering. However, no comprehensive review has yet addressed the application of collagen scaffold materials for OA treatment. This review highlights the advanced fabrication of collagen-based scaffolds, including porous matrices, hydrogels, and microspheres, and their integration with cells, growth factors, and pharmaceuticals for OA therapy. Additionally, it examines the clinical translation of collagen-integrated constructs for managing OA. With continued innovation, collagen-enriched scaffolds are expected to play a pivotal role in improving outcomes for OA patients.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730000, PR China
| | - Xian Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730000, PR China
| | - Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730000, PR China
| | - Xiaxia Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730000, PR China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Liang Z, Pan Q, Xue F, Zhang J, Fan Z, Wang W, Guo X, Qian Z, Shen Y, Song W, Wang L, Zhou G, He Y, Ren W. Biphasic biomimetic scaffolds based on a regionally decalcified bone framework and pre-chondrogenic microspheres for osteochondral defect repair. Mater Today Bio 2025; 31:101494. [PMID: 39896291 PMCID: PMC11783122 DOI: 10.1016/j.mtbio.2025.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Osteochondral defects are still facing a significant challenge in clinical surgery, making post-trauma repair difficult. Tissue engineering has provided a promising approach to solving these defects. However, existing scaffolds cannot replicate the complex biphasic cartilage-bone microenvironment with accuracy. We aimed to develop a biphasic biomimetic scaffold with regionally regulated vascularization that promoted chondrogenesis and osteogenesis through bidirectional regulation of endochondral ossification. This scaffold consisted of pre-chondrogenic microspheres (PCMs) and a decalcified bone frame prepared by decalcifying the cartilage layer and bone layer of the scaffold to varying degrees. Incorporation of PCMs into the cartilage layer created a microenvironment that promoted cartilage regeneration while axitinib was modified to inhibit vascularization and enhance cartilage regeneration. The bone layer provided a microenvironment that promoted endochondral ossification and facilitated bone repair. In vitro studies have shown that axitinib-modified cartilage layers significantly inhibit the VEGF expression of pre-chondrogenic cells, while decalcified bone powder from the bone layer significantly promotes the ossification of PCMs. In vivo experiments indicated that this decalcified bone frame controls the endochondral ossification of PCMs through regionalized angiogenesis, promoting the integrated regeneration and reconstruction of osteochondral defects in rabbit knee joints. These results suggest that our designed demineralized bone frame can precisely engineer the osteochondral regeneration microenvironment, providing theoretical guidance for the integrated regeneration and repair of anisotropic tissue injuries.
Collapse
Affiliation(s)
- Zhuo Liang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qingqing Pan
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fei Xue
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingdi Zhang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhenlin Fan
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weiyun Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueqiang Guo
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhuang Qian
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yaping Shen
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjuan Song
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lei Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yong He
- The Second Affiliated Hospital of Zhejiang University and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjie Ren
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
5
|
Ullah S, Zainol I. Fabrication and applications of biofunctional collagen biomaterials in tissue engineering. Int J Biol Macromol 2025; 298:139952. [PMID: 39824416 DOI: 10.1016/j.ijbiomac.2025.139952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration. Collagen fabrication with organ-specific biofunctionality facilitated organ tissue engineering as compared to unmodified collagen biomaterials. Collagen biofunctionality improved by subjecting collagen to synthesis, fibers and surface modifications, and blending with other components. Furthermore, collagen is loaded with bioactive molecules, growth factors, drugs and cells also enhancing the biofunctionality of collagen biomaterials. In this review, we will explore the recent advancements in biofunctional collagen biomaterials fabrication with organ-specific biofunctionality in tissue engineering to resolve various organ tissue engineering issues and regeneration challenges. Biofunctional collagen biomaterials stimulate microenvironments inside and around the implants to excellently regulate cellular activities, differentiate cells into organ native cells, enhanced ECM production and remodeling to regenerate organ tissues with native structure, function and maturation. This review critically explored biofunctional collagen biomaterials fabrication in resolving various organ tissue engineering issues and regeneration challenges, and opening new directions of biofunctional collagen biomaterials fabrication, design and applications.
Collapse
Affiliation(s)
- Saleem Ullah
- Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| | - Ismail Zainol
- Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| |
Collapse
|
6
|
Wen M, Guo X, Zhang J, Li Y, Li J, Fan Z, Ren W. Non-coding RNA in cartilage regeneration: regulatory mechanism and therapeutic strategies. Front Bioeng Biotechnol 2025; 13:1522303. [PMID: 40206827 PMCID: PMC11979253 DOI: 10.3389/fbioe.2025.1522303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
The pathogenesis of cartilage injury and degeneration is exceptionally complex. In addition to being associated with osteoarthritis and trauma, factors such as age, gender, obesity, inflammation, and apoptosis of chondrocytes are also considered significant influencing factors. Due to the lack of direct blood supply, lymphatic circulation, and neural innervation, coupled with low metabolic activity, the self-repair capability of cartilage after injury is extremely limited, making its treatment quite challenging. Recent research indicated that ncRNA, a class of RNA transcribed from the genome that does not encode proteins, played a crucial regulatory role in various disease processes. Particularly noteworthy is its positive regulatory role in cartilage regeneration, achieved through the modulation of the inflammatory microenvironment, promotion of chondrocyte proliferation, inhibition of chondrocyte degradation, and facilitation of the recruitment and differentiation of bone marrow mesenchymal stem cells into chondrocytes. In the earlier phase, we conducted a review and outlook on therapeutic strategies for the regeneration of articular cartilage injuries. This article specifically focuses on summarizing the regulatory roles and research advancements of ncRNA in cartilage regeneration, as well as its contributions to the clinical application of gene therapy for cartilage defects.
Collapse
Affiliation(s)
- Mengnan Wen
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xueqiang Guo
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Jingdi Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yunian Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jixiang Li
- Junji College of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Wang Y, Zhang X, Li X, Cheng M, Cui X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front Cell Dev Biol 2025; 13:1544129. [PMID: 40114970 PMCID: PMC11922910 DOI: 10.3389/fcell.2025.1544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The vascular microenvironment comprises of anatomical structures, extracellular matrix components, and various cell populations, which play a crucial role in regulating vascular homeostasis and influencing vascular structure and function. Under physiological conditions, intrinsic regulation of the vascular microenvironment is required to sustain vascular homeostasis. In contrast, under pathological conditions, alterations to this microenvironment lead to vascular injury and pathological remodeling. According to the anatomy, the vascular microenvironment can be subdivided into three sections from the inside out. The vascular endothelial microenvironment, centered on vascular endothelial cells (VECs), includes the extracellular matrix and various vascular physicochemical factors. The VECs interact with vascular physicochemical factors to regulate the function of various parenchymal cells, including hepatocytes, neurons and tumor cells. The vascular wall microenvironment, comprising the vasa vasorum and their unique stem/progenitor cell niches, plays a pivotal role in vascular inflammation and pathological remodeling. Additionally, the perivascular microenvironment, which includes perivascular adipose tissue, consists of adipocytes and stem cells, which contribute to the pathological processes of atherosclerosis. It is anticipated that targeted regulation of the vascular microenvironment will emerge as a novel approach for the treatment of various diseases. Accordingly, this review will examine the structure of the vascular microenvironment, the regulation of vascular function by vascular cells and stem/progenitor cells, and the role of the vascular microenvironment in regulating cardiovascular diseases.
Collapse
Affiliation(s)
- Yanhui Wang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaoyun Zhang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xin Li
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaodong Cui
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
8
|
Wu F, Feng X, Gao W, Zeng L, Xu B, Chen Z, Zheng C, Hu X, Xu S, Song H, Zhou X, Liu Z. Engineering a Self-Delivery Nanoplatform for Chemo-Photodynamic-Immune Synergistic Therapies against Aggressive Melanoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11634-11652. [PMID: 39960055 DOI: 10.1021/acsami.4c18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The effectiveness of immunotherapy in killing melanoma is hindered by a T-cell deficiency and the lack of tumor immunogenicity. Consequently, there is an urgent need for a platform that can further activate the immune system and boost the immune response of the host to tumors. Compared with monotherapy, combination therapy shows promise in improving treatment efficacy and response rates. This study introduces the pioneering use of a rationally designed active targeting nanoplatform to bind axitinib, paclitaxel, and verteporfin to human serum albumin (APV@HSA NPs). APV@HSA NPs have demonstrated the capability to induce dual-induced apoptosis in tumor cells through chemo- and photodynamic effects, while also enhancing immunogenic cell death and promoting dendritic cell maturation. Additionally, the platform promoted the production of CD8+ T cells and memory T cells and inhibited vascular endothelial growth factor via axitinib, facilitating the infiltration of immune effector cells and optimizing chemo-photodynamic immunotherapy. Hence, amplified chemo-photodynamic-immunological nanomedicines with excellent biocompatibility have been redesigned to inhibit the tumor microenvironment and combat the growth of primary tumor and lung metastasis. This approach initiates a series of immune responses, presenting a promising therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fei Wu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xianquan Feng
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Wenhao Gao
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Bingbing Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhenzhen Chen
- Department of Clinical Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province 350025, China
| | - Changqing Zheng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xiaomu Hu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Shiying Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Hongtao Song
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xin Zhou
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhihong Liu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| |
Collapse
|
9
|
Liu W, Jiang H, Chen J, Tian Y, He Y, Jiao Y, Guan Y, Jia Z, Wu Y, Huang C, Ouyang Y, Xu W, Qi J, Peng J, Wang A. High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration. Mater Today Bio 2025; 30:101372. [PMID: 39839494 PMCID: PMC11745967 DOI: 10.1016/j.mtbio.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores. However, the extracellular matrix (ECM) of native cartilage can provide structural support and is an ideal source of microcarriers. Autologous adipose-derived mesenchymal stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) are widely used in cartilage tissue engineering. In this study, we fabricated microcarriers and compared the behavior of two homologous cell types in the microcarrier environment. The microcarrier environment highlighted the advantages of ADSCs and promoted the proliferation and migration of these cells. Then, ADSCs microtissues (ADSCs-MT) and BMSCs microtissues (BMSCs-MT) were fabricated using a three-dimensional dynamic culture system. In vitro and in vivo experiments verified that the cartilage regeneration ability of ADSCs-MT was significantly superior to that of BMSCs-MT. Transcriptomics revealed that ADSCs-MT showed significantly lower expression levels of ECM degradation, osteogenesis, and fibrocartilage markers. Finally, the protective effect of microtissues on inflammatory chondrocytes was validated. Overall, the ADSCs-MT constructed in this study achieved excellent cartilage regeneration and could be promising for the autologous application of cartilage microtissues.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Hongyu Jiang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajie Chen
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Yue Tian
- The Second Medical Center of Chinese PLA General Hospital, PR China
| | - Ying He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Ying Jiao
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yanbin Wu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Cheng Huang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Yiben Ouyang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Wenjing Xu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Jianhong Qi
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Aiyuan Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
10
|
Zheng W, Li J, Li J, Bie N, Wei Z, Qin J, Li S, Yong T, Du Q, Yang X, Gan L. In-situ nanoplatform with synergistic neutrophil intervention and chemotherapy to prevent postoperative tumor recurrence and metastasis. J Control Release 2024; 375:316-330. [PMID: 39251139 DOI: 10.1016/j.jconrel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.
Collapse
Affiliation(s)
- Wenxia Zheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaojiao Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Qin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Du
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Winkler T, Geissler S, Maleitzke T, Perka C, Duda GN, Hildebrandt A. Advanced therapies in orthopaedics. EFORT Open Rev 2024; 9:837-844. [PMID: 39222330 PMCID: PMC11457816 DOI: 10.1530/eor-24-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Advanced therapies are expected to play a crucial role in supporting repair after injury, halting the degeneration of musculoskeletal tissue to enable and promote physical activity. Despite advancements, the progress in developing advanced therapies in orthopaedics lags behind specialties like oncology, since innovative regenerative treatment strategies fall short of their expectations in musculoskeletal clinical trials. Researchers should focus on understanding the mechanism of action behind the investigated target before conducting clinical trials. Strategic research networks are needed that not only enhance scientific exchange among like-minded researchers but need to include early on commercial views, companies and venture perspectives, regulatory insights and reimbursement perspectives. Only in such collaborations essential roadblocks towards clinical trials and go-to-patients be overcome.
Collapse
Affiliation(s)
- Tobias Winkler
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Hildebrandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| |
Collapse
|
12
|
Marecik S, Pudełko-Prażuch I, Balasubramanian M, Ganesan SM, Chatterjee S, Pielichowska K, Kandaswamy R, Pamuła E. Effect of the Addition of Inorganic Fillers on the Properties of Degradable Polymeric Blends for Bone Tissue Engineering. Molecules 2024; 29:3826. [PMID: 39202905 PMCID: PMC11356924 DOI: 10.3390/molecules29163826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Bone tissue exhibits self-healing properties; however, not all defects can be repaired without surgical intervention. Bone tissue engineering offers artificial scaffolds, which can act as a temporary matrix for bone regeneration. The aim of this study was to manufacture scaffolds made of poly(lactic acid), poly(ε-caprolactone), poly(propylene fumarate), and poly(ethylene glycol) modified with bioglass, beta tricalcium phosphate (TCP), and/or wollastonite (W) particles. The scaffolds were fabricated using a gel-casting method and observed with optical and scanning electron microscopes. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), wettability, and degradation tests were conducted. The highest content of TCP without W in the composition caused the highest hydrophilicity (water contact angle of 61.9 ± 6.3°), the fastest degradation rate (7% mass loss within 28 days), moderate ability to precipitate CaP after incubation in PBS, and no cytotoxicity for L929 cells. The highest content of W without TCP caused the highest hydrophobicity (water contact angle of 83.4 ± 1.7°), the lowest thermal stability, slower degradation (3% mass loss within 28 days), and did not evoke CaP precipitation. Moreover, some signs of cytotoxicity on day 1 were observed. The samples with both TCP and W showed moderate properties and the best cytocompatibility on day 4. Interestingly, they were covered with typical cauliflower-like hydroxyapatite deposits after incubation in phosphate-buffered saline (PBS), which might be a sign of their excellent bioactivity.
Collapse
Affiliation(s)
- Stanisław Marecik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Iwona Pudełko-Prażuch
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Suvro Chatterjee
- Department of Biotechnology, Golapbag Campus, University of Burdwan, Burdwan 713 104, West Bengal, India;
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| |
Collapse
|
13
|
Li Q, Chen R, Cui T, Bai Y, Hu J, Yu J, Wang G, Chen S. Robust Gradient Hydrogel-Loaded Nanofiber Fleshy Artificial Skin Via A Coupled Microfluidic Electrospinning-Reactive Coating Strategy. Adv Healthc Mater 2024; 13:e2304321. [PMID: 38490740 DOI: 10.1002/adhm.202304321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/02/2024] [Indexed: 03/17/2024]
Abstract
Skin regeneration attracts tremendous interest due to the important role of skin for human protection and beauty. Thus, methods allowing artificial skin to be carried out in a controllable fashion are potentially important for wound healing, which involves an intersection of materials, medicine, biology, and other disciplines. Herein, aiming at a new general methodology for fleshy materials, a new hydrogel-loaded hydrophobic-hydrophilic nanofiber fleshy artificial skin is designed and fabricated. The gradient hydrogel-loaded nanofiber artificial skin integrates both advantages of nanofiber and hydrogel, exhibiting fleshy feature (comparability to real skin in terms of appearance, texture, and function), excellent air permeability, compatibility, and good mechanical and antibacterial property. Interestingly, the efficient transport channels are formed throughout the hydrogel-loaded nanofiber structure, which is beneficial for water absorption and transfer. These advantages enable the establishment of a moist and favorable microenvironment; thus, greatly accelerating wound healing process. This work couples microfluidic electrospinning with reactive coating technique, which is in favor of material design and fabrication with controllable and uniform structures. The hydrogel-loaded nanofiber fleshy artificial skin shows comparability to real skin in terms of beauty, texture, and function, which would definitely provide new opportunities for the further optimization and upgrading of artificial skin.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Rong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Yuting Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Jie Hu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Jiafei Yu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| |
Collapse
|
14
|
Chen R, Chen F, Chen K, Xu J. Advances in the application of hydrogel-based scaffolds for tendon repair. Genes Dis 2024; 11:101019. [PMID: 38560496 PMCID: PMC10978548 DOI: 10.1016/j.gendis.2023.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.
Collapse
Affiliation(s)
- Renqiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Fanglin Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kenian Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
15
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
16
|
Hu Y, Fu Z, Yang S, Zhou Y, Zhu H, Zhu Y, Zhou J, Lin K, Xu Y. A multifunctional quercetin/polycaprolactone electrospun fibrous membrane for periodontal bone regeneration. Mater Today Bio 2024; 24:100906. [PMID: 38226016 PMCID: PMC10788537 DOI: 10.1016/j.mtbio.2023.100906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zeyu Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Shiyuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huimin Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuanjin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Zhou J. Curcumin-loaded porous scaffold: an anti-angiogenic approach to inhibit endochondral ossification. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2255-2273. [PMID: 37382577 DOI: 10.1080/09205063.2023.2231663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Bone marrow stem cells (BMSCs) are recognized for their robust proliferative capabilities and multidirectional differentiation potential. Ectopic endochondral ossification of BMSC-generated cartilage in subcutaneous environments is a concern associated with vascularization. Hence, devising a reliable strategy to inhibit vascularization is crucial. In this study, an anti-angiogenic drug, curcumin (Cur), was encapsulated into gelatin to create a porous Cur/Gelatin scaffold, with the aim of inhibiting vascular invasion and preventing endochondral ossification of BMSC-regenerated cartilage. In vitro wound healing tests demonstrated that a 30 μM Cur solution could inhibit the migration and growth of human umbilical vein endothelial cells without impeding BMSCs migration and growth. Compared to the gelatin scaffold, our findings verified that the Cur/Gelatin scaffold significantly inhibited vascular invasion after being subcutaneously implanted into rabbits for 12 weeks, as evidenced by gross observation and immunofluorescence CD31 staining. Moreover, both the porous gelatin and Cur/Gelatin scaffolds were populated with BMSCs and underwent in vitro chondrogenic cultivation to produce cartilage, followed by subcutaneous implantation in rabbits for 12 weeks. Histological examinations (including HE, Safranin-O/Fast Green, toluidine blue, and immunohistochemical COL II staining) revealed that the BMSC-generated cartilage in the gelatin group exhibited prominent endochondral ossification. In contrast, the BMSC-generated cartilage in the Cur/Gelatin group maintained cartilage features, such as cartilage matrix and lacunar structure. This study suggests that Cur-loaded scaffolds offer a reliable platform to inhibit endochondral ossification of BMSC-generated cartilage.
Collapse
Affiliation(s)
- Jianwei Zhou
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Ai X, Luo R, Wang H, Yan B, Li K, Yu X, Dong W, Tan Y, Liu M, Chen Y, Lu T, Wang X, Wang W, Fu W. Vascular endothelial growth factor a modified mRNA engineered cellular electrospun membrane complexes promotes mouse skin wound repair. Mater Today Bio 2023; 22:100776. [PMID: 37664797 PMCID: PMC10474086 DOI: 10.1016/j.mtbio.2023.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Artificial skin substitutes are one of the most promising areas of wound healing research; however, graft survival largely depends on how the treatment is performed. Early angiogenesis is essential for wound healing and graft survival and vascular endothelial growth factor A (VEGFA) is an important cytokine that stimulates angiogenesis. Here, we first investigated the effects of different ratios of collagen (BC) and gelatin blended with poly (l-lactide-co-caprolactone) (PLCL) on nanofibrous membranes. The Young's modulus and cell proliferation were significantly higher in the 50% BC group than that in all other groups. Then, cellular electrospun membrane complexes (CEMC) were successfully constructed from nanoscaffolds and fibroblasts extracted from human foreskin and engineered with controlled autocrine VEGFA by transfecting VEGFA modified mRNA (modRNA). Engineered CEMC significantly promoted wound healing in vivo and contributed to stable vascular network formation in the grafted area, thereby increasing the survival rate of the engineered skin. This study provides a potential solution for wound healing while establishing the value of different RNA modification methods for various engineered skins in the future, thereby advancing engineered skin development.
Collapse
Affiliation(s)
- Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
| | - Kaixiang Li
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xindi Yu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Dong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiangying Wang
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
19
|
Lin TL, Lin YH, Lee AKX, Kuo TY, Chen CY, Chen KH, Chou YT, Chen YW, Shie MY. The exosomal secretomes of mesenchymal stem cells extracted via 3D-printed lithium-doped calcium silicate scaffolds promote osteochondral regeneration. Mater Today Bio 2023; 22:100728. [PMID: 37538916 PMCID: PMC10393792 DOI: 10.1016/j.mtbio.2023.100728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
The development of surface modification techniques has brought about a major paradigm shift in the clinical applications of bone tissue regeneration. Biofabrication strategies enable the creation of scaffolds with specific microstructural environments and biological components. Lithium (Li) has been reported to exhibit anti-inflammatory, osteogenic, and chondrogenic properties by promoting several intracellular signaling pathways. Currently, research focuses on fabricating scaffolds with simultaneous dual bioactivities to enhance osteochondral regeneration. In this study, we modified the surface of calcium silicate (CS) scaffolds with Li using a simple immersion technique and evaluated their capabilities for bone regeneration. The results showed that Li ions could be easily coated onto the surfaces of CS scaffolds without affecting the microstructural properties of CS itself. Furthermore, the modifications did not affect the printing capabilities of the CS, and porous scaffolds could be fabricated via extrusion. Moreover, the presence of Li improved the surface roughness and hydrophilicity, thus leading to enhanced secretion of osteochondral-related regeneration factors, such as alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen II (Col II) proteins. Subsequent in vivo studies, including histological and micro-CT analyses, confirmed that the Li-modified CS scaffolds promoted osteochondral regeneration. The transcriptome analysis suggested that the enhanced osteochondrogenic capabilities of our scaffolds were influenced by paracrine exosomes. We hope this study will inspire further research on osteochondral regeneration.
Collapse
Affiliation(s)
- Tsung-Li Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung, 404332, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, 404332, Taiwan
| | - Alvin Kai-Xing Lee
- Department of Orthopedics, China Medical University Hospital, Taichung, 404332, Taiwan
| | - Ting-You Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, 404332, Taiwan
| | - Kun-Hao Chen
- School of Medicine, China Medical University, Taichung City, 406040, Taiwan
| | - Yun-Ting Chou
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung, 406040, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, 404332, Taiwan
| | - Ming-You Shie
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan
- School of Dentistry, China Medical University, Taichung, 406040, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
20
|
Sun Q, Zhuang Z, Bai R, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206757. [PMID: 37386801 PMCID: PMC10460901 DOI: 10.1002/advs.202206757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Indexed: 07/01/2023]
Abstract
Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Zimeng Zhuang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tianyi Xin
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
21
|
Ye YJ, Xu YF, Hou YB, Yin DC, Su DB, Zhao ZX. The regulation of tendon stem cell distribution, morphology, and gene expression by the modulus of microfibers. Colloids Surf B Biointerfaces 2023; 228:113393. [PMID: 37327653 DOI: 10.1016/j.colsurfb.2023.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/21/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
The mechanical properties of a stem cell culture substrate significantly impact cell adhesion, survival, migration, proliferation, and differentiation in vitro. A major challenge in engineering artificial stem cell substrate is to properly identify the relevant physical features of native stem cell niches, which are likely different for each stem cell type. The behavior of tendon stem cells has potentially significant implications for tendon repair. Here, microfiber scaffolds with various modulus of elasticity are fabricated by near-field electrospinning, and their regulating effects on the in vitro behavior of tendon stem cells (TSCs) are discussed in this study. The number of pseudopodia shows a biphasic relationship with the modulus of scaffold. The proliferation, polarization ratio and alignment degree along the fibers of the TSCs increase with the increase of fiber modulus. TSCs cultured on the scaffold with moderate modulus (1429 MPa) show the upregulation of tendon-specific genes (Col-I, Tnmd, SCX and TNCF). These microfiber scaffolds provide great opportunities to modulate TSCs behavior at the micrometer scales. In conclusion, this study provides an instructive mechanical microenvironment for TSCs behaviors and may lead to the development of desirable engineered artificial stem cell substrate for tendon healing.
Collapse
Affiliation(s)
- Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, ShaanXi 710072, PR China.
| | - Yi-Fan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, ShaanXi 710072, PR China
| | - Ya-Bo Hou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, ShaanXi 710072, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, ShaanXi 710072, PR China.
| | - Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, ShaanXi 710072, PR China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, ShaanXi 710072, PR China
| |
Collapse
|
22
|
Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202212561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage defects bring about disability and worldwide socioeconomic loss, therefore, articular cartilage repair and regeneration is recognized as a global issue. However, due to its avascular and nearly acellular characteristic, cartilage tissue regeneration ability is limited to some extent. Despite the availability of various treatment methods, including palliative drugs and surgical regenerative therapy, articular cartilage repair and regeneration still face major challenges due to the lack of appropriate methods and materials. Smart biomaterials can regulate cell behavior and provide excellent tissue repair and regeneration microenvironment, thus inducing articular cartilage repair and regeneration. This process is adjusted by controlling drug/bioactive factors release via responding to exogenous/endogenous stimuli, tailoring materials’ structure and function similar to native cartilage or providing physiochemical and physical signaling factors. Herein, smart biomaterials, recently applied in articular cartilage repair and regeneration, are elaborated from two aspects: smart drug release system and smart scaffolds. Furthermore, articular cartilage and its defects and advanced manufacturing techniques of smart biomaterials are discussed in brief. Finally, perspectives for smart biomaterials used in articular cartilage repair and regeneration are presented and the clinical translation of smart biomaterials is emphasized.
Collapse
Affiliation(s)
- Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics Tongji University Zhangwu Road 100 Shanghai 200092 P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
23
|
Cai R, Zhang Y, Li J, Wu X. Curcumin-loaded nanofilm generating avascular niche to stabilize in vivo ectopic chondrogenesis of BMSC. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-18. [PMID: 36647747 DOI: 10.1080/09205063.2023.2166336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone marrow stem cells (BMSCs) engineered cartilage (BEC) represent a promising substitute for cartilage repairment. However, the in vitro-generated BEC was prone to endochondral ossification after in vivo ectopic implantation, significantly hindering its clinical translation. Increasing evidence suggested that vascularization essentially led to endochondral ossification of BEC in the subcutaneous microenvironment. Herein, a potent antiangiogenic agent of curcumin (Cur) was successfully laden into a polycaprolactone (PCL) to prepare a Cur/PCL nanofilm. The in vitro findings of this study showed that after co-culturing with human umbilical vein endothelial cells, Cur was sustained-released from Cur/PCL and suppressed the formation of tubes. Further, the Cur/PCL nanofilm was cytocompatible when recolonized with BMSCs. BMSCs were seeded into a porous polyglycolic acid scaffold and underwent 4 weeks of in vitro chondrogenic culture to successfully produce BEC. Thereafter, the BEC is encapsulated by the Cur/PCL nanofilm and subcutaneously implanted into nude mice for 4 weeks. The localized and sustained Cur release could inhibit vascular invasion via the antagonization of vascular endothelial growth factor signal, and stabilizes the cartilaginous phenotype. The results confirmed that Cur/PCL nanofilms protected BEC from vascularization and endochondral ossification in vivo, thus, indicating that the encapsulation of BEC using an anti-angiogenic nanofilm could be used as a novel strategy for modulating the in vivo ectopic BEC stability to repair cartilage defects.
Collapse
Affiliation(s)
- Renzhong Cai
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Thoracic Surgery, Hainan General Hospital, Hainan Hospital, Affiliated to Hainan Medical College, Haikou, P.R. China
| | - Yu Zhang
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Breast Surgery, Hainan General Hospital, Hainan Hospital, Affiliated to Hainan Medical College, Haikou, P.R. China
| | - Jun Li
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xu Wu
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
24
|
Chen Y, Yan X, Yuan F, Lin L, Wang S, Ye J, Zhang J, Yang M, Wu D, Wang X, Yu J. Kartogenin-Conjugated Double-Network Hydrogel Combined with Stem Cell Transplantation and Tracing for Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105571. [PMID: 36253092 PMCID: PMC9762312 DOI: 10.1002/advs.202105571] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The effectiveness of existing tissue-engineering cartilage (TEC) is known to be hampered by weak integration of biocompatibility, biodegradation, mechanical strength, and microenvironment supplies. The strategy of hydrogel-based TEC holds considerable promise in circumventing these problems. Herein, a non-toxic, biodegradable, and mechanically optimized double-network (DN) hydrogel consisting of polyethylene glycol (PEG) and kartogenin (KGN)-conjugated chitosan (CHI) is constructed using a simple soaking strategy. This PEG-CHI-KGN DN hydrogel possesses favorable architectures, suitable mechanics, remarkable cellular affinity, and sustained KGN release, which can facilitate the cartilage-specific genes expression and extracellular matrix secretion of peripheral blood-derived mesenchymal stem cells (PB-MSCs). Notably, after tracing the transplanted cells by detecting the rabbit sex-determining region Y-linked gene sequence, the allogeneic PB-MSCs are found to survive for even 3 months in the regenerated cartilage. Here, the long-term release of KGN is able to efficiently and persistently activate multiple genes and signaling pathways to promote the chondrogenesis, chondrocyte differentiation, and survival of PB-MSCs. Thus, the regenerated tissues exhibit well-matched histomorphology and biomechanical performance such as native cartilage. Consequently, it is believed this innovative work can expand the choice for developing the next generation of orthopedic implants in the loadbearing region of a living body.
Collapse
Affiliation(s)
- You‐Rong Chen
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - Xin Yan
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - Fu‐Zhen Yuan
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - Lin Lin
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - Shao‐Jie Wang
- Department of Joint Surgery and Sports Medicine, Zhongshan HospitalXiamen UniversityXiamen361000China
| | - Jing Ye
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - Ji‐Ying Zhang
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - Meng Yang
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| | - De‐Cheng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of Chemistry Chinese Academy of SciencesBeijing100190China
| | - Jia‐Kuo Yu
- Department of Sports MedicineBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Institute of Sports MedicinePeking UniversityBeijing100191China
| |
Collapse
|
25
|
Yang C, Feng J, Liu Z, Jiang J, Wang X, Yang C, Chen HJ, Xie X, Shang L, Wang J, Peng Z. Lubricant-entrenched Slippery Surface-based Nanocarriers to Avoid Macrophage Uptake and Improve Drug Utilization. J Adv Res 2022:S2090-1232(22)00196-5. [PMID: 36041690 DOI: 10.1016/j.jare.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Reducing the protein adsorption of nanoparticles (NPs) as drug carriers to slow their rapid clearance by macrophages uptake is a critical challenge for NPs clinical translational applications. Despite extensive research efforts to inhibit cellular uptake, including covering biological agents or surface chemical coatings to impart "stealth" properties to NPs, their stability remains insufficient. OBJECTIVES Developed a novel surface modification technology based on a physical infusion engineering approach to achieve persistent inhibition of protein adhesion and cellular uptake by nanocarriers. METHODS The nanoparticles were prepared based on conventional drug carrier mesoporous silica NPs through a two-step process. A functional nanoscale slippery surface was formed by grafting "liquid-like" brushes on the particles surface, and then a lubricant-entrenched slippery surfaces (LESS) was formed by infusing silicone oil lubricant into the entire surface. Co-incubation with macrophages (in vitro and in vivo) was used to examine the anti-uptake properties of modified NPs. The anti-adhesion properties of LESS coating surfaces to various liquids, proteins and cells were used to analyze the anti-uptake mechanism. Loaded with drugs, combined with tumor models, to evaluate the drug utilization of modified NPs. RESULTS Relying on the stable and slippery LESS coating, the modified surface could prevent the adhesion of various liquids and effectively shield against the adhesion of proteins and cells, as well as remarkably reduce macrophage cellular uptake in vitro and in vivo. In addition, the LESS coating does not affect cell activity and allows NPs to be loaded with drugs, significantly improving the utilization of drugs in vitro and in vivo. This allows the NPs to reach to the target tumor site for drug delivery without active clearance by macrophages. CONCLUSION Our research introduces a new nanocarrier technology to improve anti-biofouling performance and stealth efficiency that will facilitate the development of nanomedicines for clinical transformation applications.
Collapse
Affiliation(s)
- Chengduan Yang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jianming Feng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Ziqi Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Juan Jiang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Xiafeng Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China; State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Liru Shang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China.
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China.
| | - Zhenwei Peng
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
26
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
27
|
Zhu X, Xu Y, Xu X, Zhu J, Chen L, Xu Y, Yang Y, Song N. Bevacizumab-Laden Nanofibers Simulating an Antiangiogenic Niche to Improve the Submuscular Stability of Stem Cell Engineered Cartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201874. [PMID: 35557029 DOI: 10.1002/smll.202201874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Bone marrow stem cells (BMSCs) engineered cartilage (BEC) is prone to endochondral ossification in a submuscular environment due to the process of vascular infiltration, which limits its application in repairing tracheal cartilage defects. Bevacizumab, an antitumor drug with pronounced antiangiogenic activity, is successfully laden into a poly(L-lactide-co-caprolactone) system to prepare bevacizumab-laden nanofiber (BevNF) characterized by 5% and 10% bevacizumab concentrations. The in vitro results reveal that a sustained release of bevacizumab can be realized from BevNF, exhibiting inhibitive cytotoxicity toward human umbilical vein endothelial cells whereas non-cytotoxicity toward BMSCs-induced chondrocytes. A model is also established by encapsulating BEC within BevNF, aiming to realize an antiangiogenic niche under conditions of sustained and localized release of bevacizumab to inhibit the process of vascular invasion, resulting in the eventual stabilization of the cartilaginous phenotype and promotion of the process of cartilage maturation in the submuscular environment. These results also confirm that the chondrogenesis stability of BEC increases with an increase in the bevacizumab concentration, and 10% BevNF is sufficient to protect BEC from vascularization. This demonstrates that the use of BevNF can potentially help develop an effective strategy for regulating the submuscular stability of BEC to repair the defects formed in tracheal cartilage.
Collapse
Affiliation(s)
- Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| | - Xiaoxiong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| | - Linsong Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| | - Yawen Xu
- Department of Dermatology, The Third Affiliated Hospital of Suzhou University, Changzhou, 215006, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji University, Shanghai, 200433, China
| |
Collapse
|
28
|
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCollagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.
Graphical abstract
Collapse
|