1
|
Mendes-da-Cruz DA, Lemos JP, Belorio EP, Savino W. Intrathymic Cell Migration: Implications in Thymocyte Development and T Lymphocyte Repertoire Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:139-175. [PMID: 40067586 DOI: 10.1007/978-3-031-77921-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
During the development of T cells in the thymus, differentiating thymocytes move through specific thymic compartments and interact with the cortical and medullary microenvironments of the thymic lobules. This migration is primarily controlled by adhesion molecules, such as extracellular matrix ligands and receptors, and soluble factors like chemokines that are important for thymocyte differentiation. The migration events driven by these molecules include the entry of lymphoid progenitors from the bone marrow, movement within the thymus, and the exit of mature thymocytes. Notably, the migration of developing T cells can also impact the positive and negative selection processes, which are crucial for preventing the development of self-reactive T cells. This chapter will focus on the key molecules involved in thymocyte migration and how their expression patterns may affect T cell development and the formation of T cell repertoires.
Collapse
Affiliation(s)
| | - Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elizabeth Pinto Belorio
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Hosaka N. Thymus transplantation as immunotherapy for the enhancement and/or correction of T cell function. Med Mol Morphol 2024; 57:155-160. [PMID: 38935299 DOI: 10.1007/s00795-024-00394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The thymus is where T cells, among the most important immune cells involved in biological defense and homeostasis, are produced and developed. The thymus plays an important role in the defense against infection and cancer as well as the prevention of autoimmune diseases. However, the thymus gland atrophies with age, which might have pathological functions, and in some circumstances, there is a congenital defect in the thymus. These can be the cause of many diseases related to the dysregulation of T cell functions. Thus, the enhancement and/or normalization of thymic function may lead to protection against and treatment of a wide variety of diseases. Therefore, thymus transplantation is considered a strong candidate for permanent treatment. The status and issues related to thymus transplantation for possible immunotherapy are discussed although it is still at an early stage of development.
Collapse
Affiliation(s)
- Naoki Hosaka
- Department of Pathology, Fuchu Hospital, 1-10-7 Hiko-Cho, Izumi, Osaka, 594-0076, Japan.
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
3
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
4
|
Yang ZL, Tian C, He J, Pan H, Ruan GP, Zhao J, Wang K, Pan XH, Zhu XQ. Whole-transcriptome profiling reveals potential biomarkers for the reversal of thymic epithelial cell senescence by umbilical cord mesenchymal stem cells. Aging (Albany NY) 2024; 16:7009-7021. [PMID: 38637117 PMCID: PMC11087093 DOI: 10.18632/aging.205738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-β-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.
Collapse
Affiliation(s)
- Zai-Ling Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
- The Second People’s Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou, China
| | - Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Jie He
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Hang Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Jing Zhao
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Kai Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan, China
| |
Collapse
|
5
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
6
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
7
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
8
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
9
|
Shrief AI, Hamed WHE, Mazroa SA, Moustafa AM. Growth hormone enhances the CD34+ stem cells repopulation of the male albino rat thymus gland in cyclophosphamide induced injury: immunohistochemical and electron microscopic study. Ultrastruct Pathol 2023; 47:1-18. [PMID: 36709445 DOI: 10.1080/01913123.2023.2170510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Cyclophosphamide (CP) is a chemotherapeutic drug that has a harmful effect on the immune system. Growth hormone (GH) is a peptide hormone that can enhance thymic functions in cases of immunosuppression. Therefore, the present study was performed to study the possible protective effect of growth hormone on cyclophosphamide-induced changes in the rat thymus gland. Sixty-four adult male albino rats were used and divided into three main groups. Group I (Control group). Group II (CP group) received 200 mg/kg body weight CP by a single intra-peritoneal injection. Group III (CP& GH group) received GH in a dose of 2 mg/kg body weight/day by subcutaneous injection starting 5 days before cyclophosphamide injection till the end of the experiment. Administration of CP (Group II) resulted in marked histopathological changes in thymus. Thymic cortex showed depletion of thymoblasts. There was a decrease in CD34 immune positively stained stem cells and an increase in CD68 immune positively stained macrophages. Ultrastructurally, thymoblasts were markedly degenerated and the most of epithelial reticular cells were vacuolated. Administration of GH (group III) showed preservation of the histological structure of the thymus. In conclusion, growth hormone could protect against cyclophosphamide induced thymic damage.
Collapse
Affiliation(s)
- Amira I Shrief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa H E Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shireen A Mazroa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal M Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Dzhalilova DS, Kosyreva AM, Tsvetkov IS, Zolotova NA, Sentyabreva AV, Makarova OV. Morphofunctional Changes in the Thymus in Prepubertal Male Wistar Rats in LPS-Induced Systemic Inflammatory Response in Relation to Hypoxia Tolerance. Bull Exp Biol Med 2023; 174:385-390. [PMID: 36723748 DOI: 10.1007/s10517-023-05713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 02/02/2023]
Abstract
The dynamics of morphofunctional changes in the thymus during the LPS-induced systemic inflammatory response was assessed in prepubertal male Wistar rats in relationship with the resistance to hypoxia. The systemic inflammatory response was modeled by intraperitoneal administration of E. coli O26:B6 LPS. In histological sections of the thymus, the relative number of thymic bodies and proliferative activity of cells were evaluated. The relative number of CD3+CD4+, CD3+CD8+, and CD4+CD8+ cells in the thymus was determined by flow cytometry. The content of HIF-1α and endotoxin was determined in the blood serum. The expression level of Nfkb mRNA was assessed in the liver. The most pronounced changes in the indicators of the functional state of the thymus were detected 3 and 6 h after LPS administration following the increase in the content of HIF-1α and endotoxin in blood serum and Nfkb mRNA expression in the liver. In the thymus, a decrease in the number of thymic bodies consisting of 3-5 epithelial cells and an increase in the number of bodies consisting of 5 or more cells was observed. In 24 h after LPS administration, the relative number of CD3+CD4+ and CD3+CD8+ cells in the thymus decreased. At the same time, the number of Ki-67+ cells in the subcapsular zone of the thymus increased 6 and 24 h after LPS administration. These data should be taken into account in the development of approaches to the treatment of infectious and inflammatory diseases in prepubertal children.
Collapse
Affiliation(s)
- D Sh Dzhalilova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia.
| | - A M Kosyreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - I S Tsvetkov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - N A Zolotova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - A V Sentyabreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - O V Makarova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
11
|
Golomidov AV, Grigoriev EV, Moses VG, Moses KB. Pathogenesis, Prognosis and Outcomes of Multiple Organ Failure in Newborns (Review). GENERAL REANIMATOLOGY 2022; 18:37-49. [DOI: 10.15360/1813-9779-2022-6-37-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple organ failure (MOF) is the leading cause of neonatal mortality in intensive care units. The prevalence of MOF in newborns is currently unclear, since its incidence varies in asphyxia, sepsis, prematurity, and comorbidity, and depends on the level of development and funding of health care in different countries. Sepsis and acute respiratory distress syndrome prevail among the causes of MOF in this category of patients.Aim of the review. To summarize the available literature data on the pathogenesis, therapeutic strategies and outcomes of MOF in newborns.Material and methods. We searched PubMed, Scopus, Web of Science, and RSCI databases using the following keywords: «newborns, multiple organ failure, etiology, pathogenesis, premature, diagnosis, treatment, respiratory support, cardiotonic support», without language limitations. A total of 144 full-text sources were selected for analysis, 70% of which were published in the last five years and 50% were published in the last three years. Criteria for exclusion were low information value and outdated data.Results. The prevalence of MOF in neonates is currently unclear. This could be due to common association of neonatal MOF (as well as the adult one) with various diseases; thus, its incidence is not the same for asphyxia, sepsis, prematurity, and comorbidities. There is no precise data on neonatal mortality in MOF, but according to some reports, it may be as high as 13-50%.In newborns, MOF can be caused by two major causes, intrapartum/postnatal asphyxia and sepsis, but could also be influenced by other intranatal factors such as intrauterine infections and acute interruption of placental blood flow.The key element in the pathogenesis of neonate MOF is cytokinemia, which triggers universal critical pathways. Attempts to identify different clinical trajectories of critical illness in various categories of patients have led to the discovery of MOF phenotypes with specific patterns of systemic inflammatory response. This scientific trend is very promising for the creation of new classes of drugs and individual therapeutic pathways in neonates with MOF of various etiologies.The pSOFA scale is used to predict the outcome of neonatal MOF, however, the nSOFA scale has higher validity in premature infants with low birth weight.Central nervous system damage is the major MOF-associated adverse outcome in newborns, with gestational age and the timing of treatment initiation being key factors affecting risk of MOF development in both full-term and premature infants.Conclusion. The study of cellular messengers of inflammation, MOF phenotypes, mitochondrial insufficiency, and immunity in critically ill infants with MOF of various etiologies is a promising area of research. The pSOFA scale is suggested for predicting the outcome of MOF in full-term infants, while the nSOFA scale should be used in premature infants with low birth weight.
Collapse
Affiliation(s)
| | - E. V. Grigoriev
- Research Institute for Complex Problems of Cardiovascular Diseases
| | | | - K. B. Moses
- S.V. Belyaeva Kuzbass Regional Clinical Hospital
| |
Collapse
|
12
|
Shichkin VP, Felli MP, Screpanti I, Antica M. Editorial: Thymus function and aging: A focus on thymic epithelial cells. Front Immunol 2022; 13:1003490. [PMID: 36059545 PMCID: PMC9429806 DOI: 10.3389/fimmu.2022.1003490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentin P. Shichkin
- OmniFarma, Kyiv, Ukraine
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| |
Collapse
|
13
|
Li Y, Chen X. Progress on methods of T lymphocyte development in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:491-499. [PMID: 37202105 PMCID: PMC10265001 DOI: 10.3724/zdxbyxb-2021-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 05/20/2023]
Abstract
T lymphocytes (T cells) play an important role in adoptive cellular immunotherapy (ACT). T cells can be stably derived and easily obtained by various methods of T cell development in vitro, which have more advantages than traditional methods of T cells isolated from autologous or allogeneic tissues. At present, there are mainly three methods for T cell development in vitro: fetal thymus organ culture, recombinant thymus organ culture and two-dimensional culture driven by Notch signal. Fetal thymus organ culture is easy to operate, the isolated thymus can support T cell differentiation and development to maturity in vitro, but the intact thymus has problems of limited maintenance time and difficulty in cell harvesting. In recombinant thymic organ culture, various thymic stromal cells are dispersed and recombined to construct a three-dimensional culture environment, which can support T cell maturation in vitro and in vivo; however, biomaterials and three-dimensional environment may lead to limited culture maintenance time and cell yield. Two-dimensional culture method uses artificial presentation of Notch signaling pathway ligands to drive T cell differentiation and development; the culture architecture is simple and stable, but it can only support T cell development to the early immature stage. This article reviews the research progress of various culture methods of T cell development in vitro, and discusses the existing problems and the future development to facilitate the application of ACT.
Collapse
|
14
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
15
|
Constantin AM, Boşca AB, Melincovici CS, Mărginean MV, Jianu EM, Moldovan IM, Sufleţel RT, Djouini A, Şovrea AS, Şovrea AS, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, Ophthalmology Resident Physician, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania, Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. Short histological kaleidoscope - recent findings in histology. Part II. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:275-292. [PMID: 36374135 PMCID: PMC9801680 DOI: 10.47162/rjme.63.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article focuses on the latest histological knowledge in the field regarding the peripheral lymphoid system [mucosa-associated lymphoid tissue (MALT), bronchus-associated lymphoid tissue (BALT), gut-associated lymphoid tissue (GALT)], the thymus stroma, some of the various corpuscles of the human body (Hassall's corpuscles in thymus, arenaceous corpuscles in pineal gland, corpora amylacea in prostate and other locations) and Fañanas glial cells in the cerebellum.
Collapse
Affiliation(s)
- Anne-Marie Constantin
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Bianca Boşca
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariana Viorica Mărginean
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Elena Mihaela Jianu
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Maria Moldovan
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Amina Djouini
- Ophthalmology Resident Physician, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Alina Simona Şovrea
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | | | |
Collapse
|