1
|
Xi Y, Ma H, Liu X, Mu Q, An X, Li S, Liang H, Sun D, Ma R, Deng H, Wu Z, Zhang C, Liu G, Liu C. Epigenetically Reprogrammed Nanovesicles as Inverse Vaccines for Antigen-Specific Immune Tolerance in Autoimmune Diseases. NANO LETTERS 2025; 25:6725-6734. [PMID: 40213869 DOI: 10.1021/acs.nanolett.5c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The development of antigen-specific immunotherapy for autoimmune diseases constitutes an important unmet clinical need. Here we present an innovative inverse vaccine platform leveraging epigenetic reprogramming to induce durable antigen-specific immune tolerance. This inverse vaccine (mDCNVreg) is constructed using artificial cell membrane nanovesicles derived from IFN-γ-primed regulatory dendritic cells subjected to epigenetic modulation. The engineered mDCNVreg features upregulated MHC-II expression enabling targeted antigen presentation, suppressed costimulatory molecules expression, and an enhanced coinhibitory molecules display. Through coordinated mechanisms involving enhanced lymphoid trafficking and phenotype stabilization, this platform significantly enhances antigen delivery to secondary lymphoid organs while maintaining tolerogenic potency. Crucially, mDCNVreg directly induces CD4+ T cell clonal anergy through epitope-specific interactions, establishing long-lasting immune tolerance. This work demonstrates a promising epigenetic engineering approach for reverse vaccine design in personalized autoimmune disease therapy.
Collapse
Affiliation(s)
- Yue Xi
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Huifeng Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuo Li
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hao Liang
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Di Sun
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rongrong Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhengyu Wu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Chenhao Zhang
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
2
|
Yang Y, Yan L, Zhang H, Xiao C, Wang K. Atomized Neutrophil Membrane-coated MOF Nanoparticles for Direct Delivery of Dexamethasone for Severe Pneumonia. FRONT BIOSCI-LANDMRK 2025; 30:26721. [PMID: 39862093 DOI: 10.31083/fbl26721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use. Neutrophil cell membrane-derived nanovesicles, with their ability to specifically target hyper-activated immune cells and excellent mucus permeability, emerge as a promising carrier for pulmonary inhalation therapy. METHODS We designed a novel UiO66 metal-organic framework nanoparticle loaded with Dex and coated with neutrophil cell membranes (UiO66-Dex@NMP) for targeted therapy of severe pneumonia. This was achieved by loading Dex into UiO66 pores and subsequently coating with neutrophil membranes for functionalization. RESULTS Drug release experiments revealed UiO66-Dex@NMP to exhibit favorable sustained-release properties. Additionally, UiO66-Dex@NMP demonstrated excellent targeting capabilities both in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced pneumonia, UiO66-Dex@NMP significantly reduced lung inflammation compared to both the control model and Dex administered via inhalation. Histopathological analysis further confirmed UiO66-Dex@NMP's ability to alleviate lung tissue damage. CONCLUSIONS UiO66-Dex@NMP represents a novel and safe inhaled delivery carrier for Dex, offering valuable insights into the clinical management of respiratory diseases, including severe pneumonia.
Collapse
Affiliation(s)
- Yixiao Yang
- Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China
- Institute of Burn Research, The First Affiliated Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Lizhen Yan
- Department of Respiratory and Critical Care Medicine, Zibo Municipal Hospital, 255400 Zibo, Shandong, China
| | - Han Zhang
- Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China
- MPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, 226001 Nantong, Jiangsu, China
| | - Chuanguang Xiao
- Department of Breast Thyroid Surgery, Zibo Central Hospital, 255036 Zibo, Shandong, China
| | - Kai Wang
- Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
3
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
4
|
Du Y, Ding H, Chen Y, Gao B, Mao Z, Wang W, Ding Y. A Genetically Engineered Biomimetic Nanodecoy for the Treatment of Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405026. [PMID: 39206941 PMCID: PMC11516072 DOI: 10.1002/advs.202405026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Liver fibrosis, arising from factors such as viral infections or metabolic disorders, represents an ongoing global health challenge and is a major risk factor for hepatocellular carcinoma. Unfortunately, there are no clinically approved drugs available for its treatment. Recent studies have illuminated the pivotal role of macrophage recruitment in the pathogenesis of liver fibrosis, presenting a potential therapeutic target. Therefore, it holds great promise to develop novel anti-fibrotic therapies capable of inhibiting this process. Herein, a drug-loaded biomimetic nanodecoy (CNV-C) is developed by harnessing genetically engineered cellular vesicles for the treatment of liver fibrosis. CNV-C is equipped with a C-C motif chemokine receptor 2 (CCR2)-overexpressed surface, enabling it to selectively neutralize elevated levels of C-C motif chemokine ligand 2 (CCL2), thereby reducing macrophage infiltration and the subsequent production of the fibrogenic cytokine transforming growth factor β (TGF-β). Moreover, curcumin, an anti-fibrotic agent, is loaded into CNV-C and delivered to the liver, facilitating its efficacy in suppressing the activation of hepatic stellate cells by blocking the downstream TGF-β/Smad signaling. This combinational therapy ultimately culminates in the alleviation of liver fibrosis in a mouse model induced by carbon tetrachloride. Collectively, the findings provide groundbreaking proof-of-concept for employing genetically modified nanodecoys to manage liver fibrosis, which may usher in a new era of anti-fibrotic treatments.
Collapse
Affiliation(s)
- Yang Du
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Hao Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
- State Key Laboratory of Transvascular Implantation DevicesHangzhou310009China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhou310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhou310009China
- Cancer CenterZhejiang UniversityHangzhou310058China
- ZJU‐Pujian Research and Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhou310058China
| |
Collapse
|
5
|
Yang C, Chen Y, Liu J, Zhang W, He Y, Chen F, Xie X, Tang J, Guan S, Shao D, Wang Z, Wang L. Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400630. [PMID: 38867377 PMCID: PMC11321648 DOI: 10.1002/advs.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Senescent cancer cells are endowed with high immunogenic potential that has been leveraged to elicit antitumor immunity and potentially complement anticancer therapies. However, the efficacy of live senescent cancer cell-based vaccination is limited by interference from immunosuppressive senescence-associated secretory phenotype and pro-tumorigenic capacity of senescent cells. Here, a senescent cancer cell-based nanovaccine with strong immunogenicity and favorable potential for immunotherapy is reported. The biomimetic nanovaccine integrating a senescent cancer cell membrane-coated nanoadjuvant outperforms living senescent cancer cells in enhancing dendritic cells (DCs) internalization, improving lymph node targeting, and enhancing immune responses. In contrast to nanovaccines generated from immunogenic cell death-induced tumor cells, senescent nanovaccines facilitate DC maturation, eliciting superior antitumor protection and improving therapeutic outcomes in melanoma-challenged mice with fewer side effects when combined with αPD-1. The study suggests a versatile biomanufacturing approach to maximize immunogenic potential and minimize adverse effects of senescent cancer cell-based vaccination and advances the design of biomimetic nanovaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Yinglu Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jie Liu
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Wensheng Zhang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Yan He
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jie Tang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Shan Guan
- National Engineering Research Center of Immunological ProductsThird Military Medical UniversityChongqing400038China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zheng Wang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and NanoBionicsChinese Academy of SciencesSuzhou215123China
| | - Liang Wang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| |
Collapse
|
6
|
Xi Y, Ma R, Li S, Liu G, Liu C. Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants. Vaccines (Basel) 2024; 12:764. [PMID: 39066402 PMCID: PMC11281565 DOI: 10.3390/vaccines12070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
COVID-19, generated by SARS-CoV-2, has significantly affected healthcare systems worldwide. The epidemic has highlighted the urgent need for vaccine development. Besides the conventional vaccination models, which include live-attenuated, recombinant protein, and inactivated vaccines, nanovaccines present a distinct opportunity to progress vaccine research and offer convenient alternatives. This review highlights the many widely used nanoparticle vaccine vectors, outlines their benefits and drawbacks, and examines recent developments in nanoparticle vaccines to prevent SARS-CoV-2. It also offers a thorough overview of the many advantages of nanoparticle vaccines, including an enhanced host immune response, multivalent antigen delivery, and efficient drug delivery. The main objective is to provide a reference for the development of innovative antiviral vaccines.
Collapse
Affiliation(s)
- Yue Xi
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
| | - Rongrong Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Shuo Li
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- China Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
7
|
Karoichan A, Boucenna S, Tabrizian M. Therapeutics of the future: Navigating the pitfalls of extracellular vesicles research from an osteoarthritis perspective. J Extracell Vesicles 2024; 13:e12435. [PMID: 38943211 PMCID: PMC11213691 DOI: 10.1002/jev2.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 07/01/2024] Open
Abstract
Extracellular vesicles have gained wide momentum as potential therapeutics for osteoarthritis, a highly prevalent chronic disease that still lacks an approved treatment. The membrane-bound vesicles are secreted by all cells carrying different cargos that can serve as both disease biomarkers and disease modifiers. Nonetheless, despite a significant peak in research regarding EVs as OA therapeutics, clinical implementation seems distant. In addition to scalability and standardization challenges, researchers often omit to focus on and consider the proper tropism of the vesicles, the practicality and relevance of their source, their low native therapeutic efficacy, and whether they address the disease as a whole. These considerations are necessary to better understand EVs in a clinical light and have been comprehensively discussed and ultimately summarized in this review into a conceptualized framework termed the nanodiamond concept. Future perspectives are also discussed, and alternatives are presented to address some of the challenges and concerns.
Collapse
Affiliation(s)
- Antoine Karoichan
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Boucenna
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Wang K, Chen D, Zhang C, Lu L, Shang F, Li Y. Polyethylene Glycol-Modified Cationic Liposome as a Promising Nano Spray for Acute Pneumonia Treatment. Polymers (Basel) 2024; 16:1384. [PMID: 38794576 PMCID: PMC11125737 DOI: 10.3390/polym16101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Acute pneumonia (AP), triggered primarily by pathogens like bacteria and viruses, is a leading cause of human mortality. Ribavirin, a broad-spectrum antiviral agent, plays a pivotal role in the treatment of AP. However, its therapeutic use is hindered by the need for high dosages and the associated cardiac and hepatic toxicities. In this study, we synthesized polyethylene glycol-modified cationic liposomes to encapsulate ribavirin (RBV-PCL) and formulated it into a spray, aiming to enhance the effectiveness of RBV through respiratory administration. Lipopolysaccharide (LPS), a compound known to induce AP models in animals, was utilized in our research. Successfully, we established an acute pneumonia model in mice using aerosol inhalation. Through animal experiments, we investigated the therapeutic effects of RBV-PCL on mice with AP. In vivo studies revealed promising results. RBV-PCL effectively prolonged the survival of mice with AP, significantly reduced the levels of inflammatory markers such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and inhibited the infiltration of neutrophils in the lungs and spleens of mice. These findings suggest that RBV-PCL can effectively suppress the inflammatory response in mice with AP, thus holding significant potential as a novel therapeutic approach for the treatment of acute pneumonia.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (K.W.); (L.L.)
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (D.C.); (C.Z.)
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (D.C.); (C.Z.)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (K.W.); (L.L.)
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (D.C.); (C.Z.)
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (D.C.); (C.Z.)
| |
Collapse
|
9
|
Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. NANOSCALE 2024; 16:8708-8738. [PMID: 38634521 DOI: 10.1039/d4nr00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.
Collapse
Affiliation(s)
- Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
10
|
Guo Y, Wu J, Chen L, Liu L, Bi T, Pan Y, Meng QF, Wang C, Rao L, Li Q. Tea polyphenol-engineered hybrid cellular nanovesicles for cancer immunotherapy and androgen deprivation therapy. J Nanobiotechnology 2024; 22:192. [PMID: 38637848 PMCID: PMC11025249 DOI: 10.1186/s12951-024-02458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Androgen deprivation therapy (ADT) is a crucial and effective strategy for prostate cancer, while systemic administration may cause profound side effects on normal tissues. More importantly, the ADT can easily lead to resistance by involving the activation of NF-κB signaling pathway and high infiltration of M2 macrophages in tumor microenvironment (TME). Herein, we developed a biomimetic nanotherapeutic platform by deriving cell membrane nanovesicles from cancer cells and probiotics to yield the hybrid cellular nanovesicles (hNVs), loading flutamide (Flu) into the resulting hNVs, and finally modifying the hNVs@Flu with Epigallocatechin-3-gallate (EGCG). In this nanotherapeutic platform, the hNVs significantly improved the accumulation of hNVs@Flu-EGCG in tumor sites and reprogramed immunosuppressive M2 macrophages into antitumorigenic M1 macrophages, the Flu acted on androgen receptors and inhibited tumor proliferation, and the EGCG promoted apoptosis of prostate cancer cells by inhibiting the NF-κB pathway, thus synergistically stimulating the antitumor immunity and reducing the side effects and resistance of ADT. In a prostate cancer mouse model, the hNVs@Flu-EGCG significantly extended the lifespan of mice with tumors and led to an 81.78% reduction in tumor growth compared with the untreated group. Overall, the hNVs@Flu-EGCG are safe, modifiable, and effective, thus offering a promising platform for effective therapeutics of prostate cancer.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Jicheng Wu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Lefan Chen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Tianxiang Bi
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Chaoliang Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China.
| | - Qi Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
11
|
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306:122478. [PMID: 38266348 DOI: 10.1016/j.biomaterials.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Platelets play a critical role as circulating cells in the human body and contribute to essential physiological processes such as blood clotting, hemostasis, vascular repair, and thrombus formation. Currently, platelets are extensively employed in the development of innovative biomimetic drug delivery systems, offering significant enhancements in circulation time, biocompatibility, and targeted delivery efficiency compared to conventional drug delivery approaches. Leveraging the unique physiological functions of platelets, these platelet-derived drug delivery systems (DDSs) hold great promise for the treatment of diverse diseases, including cancer, cardiovascular diseases, infectious diseases, wound healing and other diseases. This review primarily focuses on the design and characteristics of existing platelet-derived DDSs, including their preparation and characterization methods. Furthermore, this review comprehensively outlines the applications of these materials across various diseases, offering a holistic understanding of their therapeutic potential. This study aimed to provide a comprehensive overview of the potential value of these materials in clinical treatment, serving as a valuable reference for the advancement of novel platelet-derived DDSs and their broader utilization in the field of disease treatment.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Qinzhen Cheng
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Yiling He
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
12
|
Park G, Na W, Lim JW, Park C, Lee S, Yeom M, Ga E, Hwang J, Moon S, Jeong DG, Jeong HH, Song D, Haam S. Self-Assembled Nanostructures Presenting Repetitive Arrays of Subunit Antigens for Enhanced Immune Response. ACS NANO 2024; 18:4847-4861. [PMID: 38189789 DOI: 10.1021/acsnano.3c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Infectious diseases pose persistent threats to public health, demanding advanced vaccine technologies. Nanomaterial-based delivery systems offer promising solutions to enhance immunogenicity while minimizing reactogenicity. We introduce a self-assembled vaccine (SAV) platform employing antigen-polymer conjugates designed to facilitate robust immune responses. The SAVs exhibit efficient cellular uptake by dendritic cells (DCs) and macrophages, which are crucial players in the innate immune system. The high-density antigen presentation of this SAV platform enhances the affinity for DCs through multivalent recognition, significantly augmenting humoral immunity. SAV induced high levels of immunoglobulin G (IgG), IgG1, and IgG2a, suggesting that mature DCs efficiently induced B cell activation through multivalent antigen recognition. Universality was confirmed by applying it to respiratory viruses, showcasing its potential as a versatile vaccine platform. Furthermore, we have also demonstrated strong protection against influenza A virus infection with SAV containing hemagglutinin, which is used in influenza A virus subunit vaccines. The efficacy and adaptability of this nanostructured vaccine present potential utility in combating infectious diseases.
Collapse
Affiliation(s)
- Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Woonsung Na
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Woo Lim
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Yeom
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eulhae Ga
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jaehyun Hwang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Suyun Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Daesub Song
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Fernández-Borbolla A, García-Hevia L, Fanarraga ML. Cell Membrane-Coated Nanoparticles for Precision Medicine: A Comprehensive Review of Coating Techniques for Tissue-Specific Therapeutics. Int J Mol Sci 2024; 25:2071. [PMID: 38396747 PMCID: PMC10889273 DOI: 10.3390/ijms25042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoencapsulation has become a recent advancement in drug delivery, enhancing stability, bioavailability, and enabling controlled, targeted substance delivery to specific cells or tissues. However, traditional nanoparticle delivery faces challenges such as a short circulation time and immune recognition. To tackle these issues, cell membrane-coated nanoparticles have been suggested as a practical alternative. The production process involves three main stages: cell lysis and membrane fragmentation, membrane isolation, and nanoparticle coating. Cell membranes are typically fragmented using hypotonic lysis with homogenization or sonication. Subsequent membrane fragments are isolated through multiple centrifugation steps. Coating nanoparticles can be achieved through extrusion, sonication, or a combination of both methods. Notably, this analysis reveals the absence of a universally applicable method for nanoparticle coating, as the three stages differ significantly in their procedures. This review explores current developments and approaches to cell membrane-coated nanoparticles, highlighting their potential as an effective alternative for targeted drug delivery and various therapeutic applications.
Collapse
Affiliation(s)
- Andrés Fernández-Borbolla
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Mónica L. Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
14
|
Liu J, You Q, Liang F, Ma L, Zhu L, Wang C, Yang Y. Ultrasound-nanovesicles interplay for theranostics. Adv Drug Deliv Rev 2024; 205:115176. [PMID: 38199256 DOI: 10.1016/j.addr.2023.115176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Nanovesicles (NVs) are widely used in the treatment and diagnosis of diseases due to their excellent vascular permeability, good biocompatibility, high loading capacity, and easy functionalization. However, their yield and in vivo penetration depth limitations and their complex preparation processes still constrain their application and development. Ultrasound, as a fundamental external stimulus with deep tissue penetration, concentrated energy sources, and good safety, has been proven to be a patient-friendly and highly efficient strategy to overcome the restrictions of traditional clinical medicine. Recent research has shown that ultrasound can drive the generation of NVs, increase their yield, simplify their preparation process, and provide direct therapeutic effects and intelligent control to enhance the therapeutic effect of NVs. In addition, NVs, as excellent drug carriers, can enhance the targeting efficiency of ultrasound-based sonodynamic therapy or sonogenetic regulation and improve the accuracy of ultrasound imaging. This review provides a detailed introduction to the classification, generation, and modification strategies of NVs, emphasizing the impact of ultrasound on the formation of NVs and summarizing the enhanced treatment and diagnostic effects of NVs combined with ultrasound for various diseases.
Collapse
Affiliation(s)
- Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Rath S, Jema JP, Kesavan K, Mallick S, Pradhan J, Chainy GBN, Nayak D, Kaushik S, Dandapat J. Arsenic album 30C exhibits crystalline nano structure of arsenic trioxide and modulates innate immune markers in murine macrophage cell lines. Sci Rep 2024; 14:745. [PMID: 38185726 PMCID: PMC10772077 DOI: 10.1038/s41598-024-51319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
Macrophages are associated with innate immune response and M1-polarized macrophages exhibit pro-inflammatory functions. Nanoparticles of natural or synthetic compounds are potential triggers of innate immunity. As2O3 is the major component of the homeopathic drug, Arsenic album 30C.This has been claimed to have immune-boosting activities, however, has not been validated experimentally. Here we elucidated the underlying mechanism of Ars. alb 30C-mediated immune priming in murine macrophage cell line. Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) used for the structural analysis of the drug reveals the presence of crystalline As2O3 nanoparticles of cubic structure. Similarly, signatures of M1-macrophage polarization were observed by surface enhanced Raman scattering (SERS) in RAW 264.7 cells with concomitant over expression of M1 cell surface marker, CD80 and transcription factor, NF-κB, respectively. We also observed a significant increase in pro-inflammatory cytokines like iNOS, TNF-α, IL-6, and COX-2 expression with unaltered ROS and apoptosis in drug-treated cells. Enhanced expression of Toll-like receptors 3 and 7 were observed both in transcriptional and translational levels after the drug treatment. In sum, our findings for the first time indicated the presence of crystalline As2O3 cubic nanostructure in Ars. alb 30C which facilitates modulation of innate immunity by activating macrophage polarization.
Collapse
Affiliation(s)
- Suvasmita Rath
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Jyoti Prava Jema
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Kamali Kesavan
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| | - Sagar Mallick
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| | - Jyotsnarani Pradhan
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | | | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy, New Delhi, India
| | - Jagneshwar Dandapat
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
16
|
Zhang Z, Xie B, Lu X, Xiong L, Li X, Zhang Y, Li C, Wang C. Intracellular self-aggregation of biomimetic Fe 3O 4 nanoparticles for enhanced ferroptosis-inducing therapy of breast cancer. NANOSCALE 2024; 16:903-912. [PMID: 38108145 DOI: 10.1039/d3nr04305c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nanomedicines based on ferroptosis may be effective strategies for cancer therapy due to their unique inducing mechanism. However, the challenges, including non-target distribution, poor accumulation and retention of nanomedicine, have a profound impact on the effectiveness of drug delivery. Here, we developed cancer cell membrane (CCM)-coated Fe3O4 nanoparticles (NPs) modified with supramolecular precursors and loaded with sulfasalazine (SAS) for breast cancer therapy. Benefiting from the coating of the CCM, these NPs can be specifically recognized and internalized by tumor cells rapidly after being administered and form aggregates via the host-guest interaction between adamantane (ADA) and cyclodextrins (CD), which in turn effectively reduces the exocytosis of tumor cells and prolongs the retention time. In vitro and in vivo studies showed that Fe3O4 NPs possessed effective cellular uptake and precise specific accumulation in tumor cells and tissues through CCM-targeted supramolecular in situ aggregation, demonstrating enhanced ferroptosis-inducing therapy of breast cancer. Overall, this work provided a supramolecular biomimetic platform to achieve targeted delivery of Fe3O4 NPs with high efficiency and precise self-assembly for improved cancer therapy.
Collapse
Affiliation(s)
- Zhendong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Beibei Xie
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| | - Xiaojie Lu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Lishan Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Xinyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Chunlai Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| |
Collapse
|
17
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
19
|
Du Y, Chen Y, Li F, Mao Z, Ding Y, Wang W. Genetically Engineered Cellular Nanovesicle as Targeted DNase I Delivery System for the Clearance of Neutrophil Extracellular Traps in Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303053. [PMID: 37759381 PMCID: PMC10646266 DOI: 10.1002/advs.202303053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are prevalent critical illnesses with a high mortality rate among patients in intensive care units. Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of ALI/ARDS and represent a promising therapeutic target. However, the clinical application of deoxyribonuclease I (DNase I), the only drug currently available to clear NETs, is limited due to the lack of precise and efficient delivery strategies. Therefore, targeted delivery of DNase I to the inflamed lung remains a critical issue to be addressed. Herein, a novel biomimetic DNase I delivery system is developed (DCNV) that employs genetically and bioorthogonally engineered cellular nanovesicles for pulmonary NETs clearance. The CXC motif chemokine receptor 2 overexpressed cellular nanovesicles can mimic the inflammatory chemotaxis of neutrophils in ALI/ARDS, leading to enhanced lung accumulation. Furthermore, DNase I immobilized through bioorthogonal chemistry exhibits remarkable enzymatic activity in NETs degradation, thus restraining inflammation and safeguarding lung tissue in the lipopolysaccharide-induced ALI murine model. Collectively, the findings present a groundbreaking proof-of-concept in the utilization of biomimetic cellular nanovesicles to deliver DNase I for treating ALI/ARDS. This innovative strategy may usher in a new era in the development of pharmacological interventions for various inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Du
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Fangyuan Li
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| |
Collapse
|
20
|
Zhang J, Liu X, Xia Y, Xu S, Liu X, Xiao H, Wang X, Liu C, Liu G. Genetically engineered nano-melittin vesicles for multimodal synergetic cancer therapy. Bioeng Transl Med 2023; 8:e10482. [PMID: 38023709 PMCID: PMC10658496 DOI: 10.1002/btm2.10482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 11/30/2023] Open
Abstract
Melittin, the principal constituent in bee venom, is an attractive candidate for cancer therapy. However, its clinical applications are limited by hemolysis, nonspecific cytotoxicity, and rapid metabolism. Herein, a novel genetically engineered vesicular antibody-melittin (VAM) drug delivery platform was proposed and validated for targeted cancer combination therapy. VAM generated from the cellular plasma membrane was bio-synthetically fabricated, with the recombinant protein (hGC33 scFv-melittin) being harbored and displayed on the cell membrane. The bioactive and targetable nanomelittin conjugated by hGC33 scFv could be released in an MMP14-responsive manner at tumor sites, which reduced off-target toxicity, especially the hemolytic activity of melittin. Importantly, VAM could be loaded with small-molecule drugs or nanoparticles for combination therapy. Nanomelittin formed pores in membranes and disturbed phospholipid bilayers, which allowed the anticancer agents (i.e., chemotherapeutic drug doxorubicin and sonosensitizer purpurin 18 nanoparticles) co-delivered by VAM to penetrate deeper tumor sites, leading to synergistic therapeutic effects. In particular, the punching effect generated by sonodynamic therapy further improved the immunomodulatory effect of nanomelittin to activate the immune response. Taken together, our findings indicate that clinically translatable VAM-based strategies represent a universal, promising approach to multimodal synergetic cancer therapy.
Collapse
Affiliation(s)
- Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public HealthXiamen UniversityXiamenChina
| | - Yutian Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Haiqing Xiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
21
|
Cao Y, Long J, Sun H, Miao Y, Sang Y, Lu H, Yu C, Zhang Z, Wang L, Yang J, Wang S. Dendritic Cell-Mimicking Nanoparticles Promote mRNA Delivery to Lymphoid Organs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302423. [PMID: 37867227 PMCID: PMC10667832 DOI: 10.1002/advs.202302423] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/29/2023] [Indexed: 10/24/2023]
Abstract
Spleen and lymphoid organs are important targets for messenger RNA (mRNA) delivery in various applications. Current nanoparticle delivery methods rely on drainage to lymph nodes from intramuscular or subcutaneous injections. In difficult-to-transfect antigen-presenting cells (APCs), such as dendritic cells (DCs), effective mRNA transfection remains a significant challenge. In this study, a lymphatic targeting carrier using DC membranes is developed, that efficiently migrated to lymphoid organs, such as the spleen and lymph nodes. The nanoparticles contained an ionizable lipid (YK009), which ensured a high encapsulation efficacy of mRNA and assisted mRNA with endosomal escape after cellular uptake. Dendritic cell-mimicking nanoparticles (DCMNPs) showed efficient protein expression in both the spleen and lymph nodes after intramuscular injections. Moreover, in immunized mice, DCMNP vaccination elicited Spike-specific IgG antibodies, neutralizing antibodies, and Th1-biased SARS-CoV-2-specific cellular immunity. This work presents a powerful vaccine formula using DCMNPs, which represents a promising vaccine candidate for further research and development.
Collapse
Affiliation(s)
- Yiming Cao
- Bioinformatics center of AMMSBeijing100850P. R. China
- Beijing Institute of Radiation MedicineBeijing100850P. R. China
| | - Jinrong Long
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Huisheng Sun
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Yiqi Miao
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Ye Sang
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Haitao Lu
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Changxiao Yu
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Zhen Zhang
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Lin Wang
- Beijing Institute of Radiation MedicineBeijing100850P. R. China
| | - Jing Yang
- Bioinformatics center of AMMSBeijing100850P. R. China
| | - Shengqi Wang
- Bioinformatics center of AMMSBeijing100850P. R. China
| |
Collapse
|
22
|
Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302131. [PMID: 37409429 PMCID: PMC10502869 DOI: 10.1002/advs.202302131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Collapse
Affiliation(s)
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yalan Zhu
- Jinhua Municipal Central HospitalJinhua321000China
| | - Yiling He
- Jinhua Municipal Central HospitalJinhua321000China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
23
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y, Shuai X. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 2023; 299:122134. [PMID: 37167895 DOI: 10.1016/j.biomaterials.2023.122134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Activated hepatic stellate cell (aHSC) is mainly responsible for deposition of extracellular collagen matrix that causes liver fibrosis. Although several siRNAs adequately inhibited HSC activation in vitro, they were demonstrated poor RNAi efficiency in vivo. Developing HSC-targeting and cytoplasmic delivery nanocarrier is highly essential to acquire a desirable siRNA therapeutic index for anti-liver fibrosis. Here, we developed a unique crosslinking nanopolyplex (called T-C-siRNA) modified by vitamin A (VA) with the well-designed natures, including the negative charge, retinol-binding protein (RBP) hijacking, and cytoplasmic siRNA release in response to ROS and cis diol molecules. The nanopolyplex was given a yolk-shell-like shape, camouflage ability in blood, and HSC-targeting capability by hijacking the endogenous ligand RBP via surface VA. PDGFR-β siRNA (siPDGFR-β) supplied via T-C-siPDGFR-β nanopolyplex dramatically reduced HSC activation and its production of pro-fibrogenic proteins in vitro and in vivo. Furthermore, T-C-siPDGFR-β nanopolyplex effectively alleviated CCl4-induced liver injury, decreased hepatic collagen sediment, and recovered liver function in mice. This study provides a sophisticated method for HSC-targeting cytoplasmic RNA delivery using endogenous ligand hijacking and dual sensitivity of ROS and cis diol compounds.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Xu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minzhao Lin
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
24
|
Ma X, Zhou W, Zhang R, Zhang C, Yan J, Feng J, Rosenholm JM, Shi T, Shen X, Zhang H. Minimally invasive injection of biomimetic Nano@Microgel for in situ ovarian cancer treatment through enhanced photodynamic reactions and photothermal combined therapy. Mater Today Bio 2023; 20:100663. [PMID: 37273798 PMCID: PMC10232889 DOI: 10.1016/j.mtbio.2023.100663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Photodynamic therapy (PDT) induces immunogenic cell death (ICD) by producing reactive oxygen species (ROS), making it an ideal method for cancer treatment. However, the extremely lower level of oxygen, short half-life of produced ROS, and limited photosensitizers accumulating in the tumor site via intravenous administration are the main reasons that limit the further application of PDT. To address these issues, we loaded the photosensitizer porphine (THPP) into biomimetic gold nanorod-mesoporous silica core-shell nanoparticles (Au-MSN NPs) to prepare Au@MSN/THPP@CM NPs. We then seeded the NPs together with catalase (CAT) into a gelatin methacryloyl (GelMA) microgel matrix to form Au@MSN-Ter/THPP@CM@GelMA/CAT microspheres consisting of biomimetic nano@microgel. The NPs and biomimetic nano@microgel exhibited enhanced photodynamic (PD) reaction and excellent photothermal conversion ability. Moreover, we further conjugated an endoplasmic reticulum (ER) targeting ligand Tosyl Ethylenediamine (Ter) on the surface of Au-MSN NPs. The results showed that both Au@MSN-Ter/THPP@CM NPs and the finally formed Au@MSN-Ter/THPP@CM@GelMA/CAT biomimetic nano@microgel induced precise and prolonged ER stress through photodynamic reactions, which stimulated the exposure of the proapoptotic calreticulin (CRT) on the cell membrane and increased the release of high mobility group box 1 (HMGB1) form the nucleus in SKOV3 cells under near-infrared (NIR) laser irradiation. Additionally, a single dose of the nano@microgel delivered through minimally invasive injection generated a significant anti-tumor effect in the SKOV3 cell line-derived orthotopic ovarian cancer mouse model through a PD and PT combination therapy. This study offers a new strategy for enhanced PDT and provides a PD/PT synergistic treatment method for ovarian cancer.
Collapse
Affiliation(s)
- Xiaodong Ma
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Wenhui Zhou
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Rong Zhang
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Cancan Zhang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jiaqi Yan
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
- Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongbo Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
25
|
Hao X, Gan J, Cao J, Zhang D, Liang J, Sun L. Biomimetic liposomes hybrid with erythrocyte membrane modulate dendritic cells to ameliorate systemic lupus erythematosus. Mater Today Bio 2023; 20:100625. [PMID: 37091811 PMCID: PMC10114516 DOI: 10.1016/j.mtbio.2023.100625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Dendritic cells (DCs)-based immunotherapy has shown immense promise in systemic lupus erythematosus (SLE) treatment. However, existing carrier strategies such as polymers, liposomes, and polypeptides, are difficult to achieve active targeting to DCs due to their intricate interaction with biological systems. Since DCs represent a class of phagocytes responsible for the removal of senescent or damaged erythrocytes, we hypothesize that hybrid vesicles containing erythrocytes membrane components could be presented to be potent drug carriers to target DCs specifically. Herein, inspired by the cell membrane fusion technique, we develop hybrid biomimetic liposomes (R-Lipo) by fusing natural erythrocyte membrane vesicles and artificial liposomes for DCs-targeted SLE therapy. The resultant R-Lipo exhibited excellent biocompatibility and was shown to be effectively internalized by DCs both in vitro and in vivo. Using an immunosuppressant, mycophenolic acid (MPA), as the model drug, MPA-loaded R-Lipo powerfully suppressed DCs maturation and efficiently controlled the duration of lupus nephritis without apparent side effects. Our findings provide a safe, effective, and easy-to-prepare biomimetic vesicle platform for the treatment of SLE and other DC-associated diseases.
Collapse
Affiliation(s)
- Xubin Hao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
26
|
Huang G, Liu L, Pan H, Cai L. Biomimetic Active Materials Guided Immunogenic Cell Death for Enhanced Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201412. [PMID: 36572642 DOI: 10.1002/smtd.202201412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Indexed: 05/17/2023]
Abstract
Despite immunotherapy emerging as a vital approach to improve cancer treatment, the activation of efficient immune responses is still hampered by immunosuppression, especially due to the low tumor immunogenicity. Immunogenic cell death (ICD) is a promising strategy to reshape the tumor microenvironment (TME) for achieving high immunogenicity. Various stimuli are able to effectively initiate their specific ICD by utilizing the corresponding ICD-inducer. However, the ICD-guided antitumor immune effects are usually impaired by various biological barriers and TME-associated immune resistance. Biomimetic active materials are being extensively explored as guided agents for ICD due to their unique advantages. In this review, two major strategies are systematically introduced that have been employed to exploit biomimetic active materials guided ICD for cancer immunotherapy, mainly including naive organism-derived nanoagents and engineered bioactive platforms. This review outlines the recent advances in the field at biomimetic active materials guided physiotherapy, chemotherapy, and biotherapy for ICD induction. The advances and challenges of biomimetic active materials guided ICD for cancer immunotherapy applications are further discussed in future clinical practice. This review provides an overview of the advances of biomimetic active materials for targeting immunoregulation and treatment and can contribute to the future of advanced antitumor combination therapy.
Collapse
Affiliation(s)
- Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Zhao Z, Wang D, Li Y. Versatile biomimetic nanomedicine for treating cancer and inflammation disease. MEDICAL REVIEW (2021) 2023; 3:123-151. [PMID: 37724085 PMCID: PMC10471090 DOI: 10.1515/mr-2022-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 09/20/2023]
Abstract
Nanosized drug delivery systems (NDDSs) have emerged as a powerful tool to optimize drug delivery in complex diseases, including cancer and inflammation. However, the therapeutic effect of NDDSs is still far from satisfactory due to their poor circulation time, low delivery efficiency, and innate toxicity. Fortunately, biomimetic approaches offer new opportunities to develop nanomedicine, which is derived from a variety of native biomolecules including cells, exosomes, bacteria, and so on. Since inheriting the superior biocompatibility and versatile functions of natural materials, biomimetic nanomedicine can mimic biological processes, prolong blood circulation, and lower immunogenicity, serving as a desired platform for precise drug delivery for treating cancer and inflammatory disease. In this review, we outline recent advances in biomimetic NDDSs, which consist of two concepts: biomimetic exterior camouflage and bioidentical molecule construction. We summarize engineering strategies that further functionalized current biomimetic NDDSs. A series of functional biomimetic NDDSs created by our group are introduced. We conclude with an outlook on remaining challenges and possible directions for biomimetic NDDSs. We hope that better technologies can be inspired and invented to advance drug delivery systems for cancer and inflammation therapy.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
28
|
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023; 52:2031-2081. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
Inside-out extracellular vesicles-like biomimetic magnetic nanoparticles for efficient screening P-Glycoprotein inhibitors to overcome cancer multidrug resistance. Colloids Surf B Biointerfaces 2023; 222:113134. [PMID: 36630772 DOI: 10.1016/j.colsurfb.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The discovery of P-Glycoprotein (P-gp) inhibitors to block chemotherapy drugs efflux is considered an attractive treatment strategy for overcoming cancer multidrug resistance (MDR). Cell membrane biomimetic platform has emerged as a promising candidate method for screening small molecule P-gp inhibitors from natural products. However, randomly oriented cell membrane coating does not guarantee the inward-opening conformation of P-gp, limiting the precise screening of P-gp inhibitors. Herein, inside-out orientation extracellular vesicles camouflaged magnetic nanoparticles (IOVMNPs) were prepared to discover P-gp inhibitors with low toxicity and high efficiency from natural products. The orientation of extracellular vesicles on the surface of IOVMNPs was rigorously confirmed by immunogold electron microscopy and sialic acid quantification assay. Finally, two potential P-gp inhibitors, honokiol and magnolol, were captured by obtained IOVMNPs. The effect of MDR reversal in combination with chemotherapy drugs was further verified by pharmacological activity experiments. The inside-out orientation extracellular vesicles encapsulation strategy provides an effective tool for the discovery of novel P-gp inhibitors from nature products, thus further extending the application field of orientation assembly cell membrane biomimetic magnetic nanoparticles. This inside-out extracellular vesicles coating also proposes a new concept for the assembly of cell membrane biomimetic platform.
Collapse
|
30
|
Jain N, Shahrukh S, Famta P, Shah S, Vambhurkar G, Khatri DK, Singh SB, Srivastava S. Immune cell-camouflaged surface-engineered nanotherapeutics for cancer management. Acta Biomater 2023; 155:57-79. [PMID: 36347447 DOI: 10.1016/j.actbio.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Nanocarriers (NCs) have shown potential in delivering hydrophobic cytotoxic drugs and tumor-specific targeting. However, the inability to penetrate the tumor microenvironment and entrapment by macrophages has limited their clinical translation. Various cell-based drug delivery systems have been explored for their ability to improve circulation half-life and tumor accumulation capabilities. Tumors are characterized by high inflammation, which aids in tumor progression and metastasis. Immune cells show natural tumor tropism and penetration inside the tumor microenvironment (TME) and are a topic of great interest in cancer drug delivery. However, the TME is immunosuppressive and can polarize immune cells to pro-tumor. Thus, the use of immune cell membrane-coated NCs has gained popularity. Such carriers display immune cell-specific surface receptors for tumor-specific accumulation but lack cell machinery. The lack of immune cell machinery makes them unaffected by the immunosuppressive TME, meanwhile maintaining the inherent tumor tropism. In this review, we discuss the molecular mechanism behind the movement of various immune cells toward TME, the preparation and characterization of membrane-coated NCs, and the efficacy of immune cell-mimicking NCs in tumor therapy. Regulatory guidelines and the bottlenecks in clinical translation are also highlighted. STATEMENT OF SIGNIFICANCE: Nanocarriers have been explored for the site-specific delivery of chemotherapeutics. However, low systemic circulation half-life, extensive entrapment by macrophages, and poor accumulation inside the tumor microenvironment prevent the clinical translation of conventional nanotherapeutics. Immune cells possess the natural tropism towards the tumor along the chemokine gradient. Hence, coating the nanocarriers with immune cell-derived membranes can improve the accumulation of nanocarriers inside the tumor. Moreover, coating with membranes derived autologous immune cells will prevent engulfment by the macrophages.
Collapse
Affiliation(s)
- Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
31
|
Dai H, Fan Q, Wang C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210157. [PMID: 37324799 PMCID: PMC10191059 DOI: 10.1002/exp.20210157] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy is used to regulate systemic hyperactivation or hypoactivation to treat various diseases. Biomaterial-based immunotherapy systems can improve therapeutic effects through targeted drug delivery, immunoengineering, etc. However, the immunomodulatory effects of biomaterials themselves cannot be neglected. In this review, we outline biomaterials with immunomodulatory functions discovered in recent years and their applications in disease treatment. These biomaterials can treat inflammation, tumors, or autoimmune diseases by regulating immune cell function, exerting enzyme-like activity, neutralizing cytokines, etc. The prospects and challenges of biomaterial-based modulation of immunotherapy are also discussed.
Collapse
Affiliation(s)
- Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| | - Qin Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM) and School of Materials Science and EngineeringNanjing University of Posts & TelecommunicationsNanjingChina
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsuChina
| |
Collapse
|
32
|
Mostafavi E, Iravani S, Varma RS. Nanosponges: An overlooked promising strategy to combat SARS-CoV-2. Drug Discov Today 2022; 27:103330. [PMID: 35908684 PMCID: PMC9330373 DOI: 10.1016/j.drudis.2022.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Among explored nanomaterials, nanosponge-based systems have exhibited inhibitory effects for the biological neutralization of, and antiviral delivery against, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More studies could pave the path for clarification of their biological neutralization mechanisms as well as the assessment of their long-term biocompatibility and biosafety issues before clinical translational studies. In this review, we discuss recent advances pertaining to antiviral delivery and inhibitory effects of nanosponges against SARS-CoV-2, focusing on important challenges and opportunities. Finally, as promising approaches for recapitulating the complex structure of different organs/tissues of the body, we discuss the use of 3D in vitro models to investigate the mechanism of SARS-CoV-2 infection and to find therapeutic targets to better manage and eradicate coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
33
|
Jing Z, Wang S, Xu K, Tang Q, Li W, Zheng W, Shi H, Su K, Liu Y, Hong Z. A Potent Micron Neoantigen Tumor Vaccine GP-Neoantigen Induces Robust Antitumor Activity in Multiple Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201496. [PMID: 35712770 PMCID: PMC9403634 DOI: 10.1002/advs.202201496] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Indexed: 05/28/2023]
Abstract
Therapeutic tumor neoantigen vaccines have been widely studied given their good safety profile and ability to avoid central thymic tolerance. However, targeting antigen-presenting cells (APCs) and inducing robust neoantigen-specific cellular immunity remain challenges. Here, a safe and broad-spectrum neoantigen vaccine delivery system is proposed (GP-Neoantigen) based on β-1,3-glucan particles (GPs) derived from Saccharomyces cerevisiae and coupling peptide antigens with GPs through convenient click chemistry. The prepared system has a highly uniform particle size and high APC targeting specificity. In mice, the vaccine system induced a robust specific CD8+ T cell immune response and humoral immune response against various conjugated peptide antigens and showed strong tumor growth inhibitory activity in EG7·OVA lymphoma, B16F10 melanoma, 4T1 breast cancer, and CT26 colon cancer models. The combination of the toll-like receptors (TLRs) agonist PolyI:C and CpG 2395 further enhanced the antitumor response of the particle system, achieving complete tumor clearance in multiple mouse models and inducing long-term rejection of reinoculated tumors. These results provide the broad possibility for its further clinical promotion and personalized vaccine treatment.
Collapse
Affiliation(s)
- Zhe Jing
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Shuqing Wang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Keyuan Xu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Qian Tang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Wenjing Li
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Wei Zheng
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Haobo Shi
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Kailing Su
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Yanting Liu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
- Department of OncologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenan Province453100P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| |
Collapse
|
34
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
35
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|