1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
3
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407373. [PMID: 39488795 PMCID: PMC11672274 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan HospitalFudan UniversityShanghai200040P. R. China
| | - Yikang Sun
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalUltrasound Research and Education InstituteClinical Research Center for Interventional MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jifeng Yu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bing Xiong
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Congjian Wen
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Boyang Zhou
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bin Huang
- Zhejiang HospitalHangzhou310013P. R. China
| | - Haohao Yin
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Huixiong Xu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| |
Collapse
|
4
|
He L, Wang L, Yu X, Tang Y, Jiang Z, Yang G, Liu Z, Li W. Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers. Nat Commun 2024; 15:8240. [PMID: 39300124 DOI: 10.1038/s41467-024-52607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
The poor 5-year survival rate for bladder cancers is associated with the lack of efficient diagnostic and treatment techniques. Despite cystoscopy-assisted photomedicine and external radiation being promising modalities to supplement or replace surgery, they remain invasive or fail to provide real-time navigation. Here, we report non-invasive fractionated photodynamic therapy of bladder cancer with full-course real-time near-infrared-II imaging based on engineered X-ray-activated nanotransducers that contain lanthanide-doped nanoscintillators with concurrent emissions in visible and the second near-infrared regions and conjugated photosensitizers. Following intravesical instillation in mice with carcinogen-induced autochthonous bladder tumours, tumour-homing peptide-labelled nanotransducers realize enhanced tumour regression, robust recurrence inhibition, improved survival rates, and restored immune homeostasis under X-ray irradiation with accompanied near-infrared-II imaging. On-demand fractionated photodynamic therapy with customized doses is further achieved based on quantifiable near-infrared-II imaging signal-to-background ratios. Our study presents a promising non-invasive strategy to confront the current bladder cancer dilemma from diagnosis to treatment and prognosis.
Collapse
Affiliation(s)
- Liangrui He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liyang Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Yizhang Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guoliang Yang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, PR China.
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
He GQ, Li H, Liu J, Hu YL, Liu Y, Wang ZL, Jiang P. Recent Progress in Implantable Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312530. [PMID: 38376369 DOI: 10.1002/adma.202312530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Indexed: 02/21/2024]
Abstract
In recent years, tremendous effort is devoted to developing platforms, such as implantable drug delivery systems (IDDSs), with temporally and spatially controlled drug release capabilities and improved adherence. IDDSs have multiple advantages: i) the timing and location of drug delivery can be controlled by patients using specific stimuli (light, sound, electricity, magnetism, etc.). Some intelligent "closed-loop" IDDS can even realize self-management without human participation. ii) IDDSs enable continuous and stable delivery of drugs over a long period (months to years) and iii) to administer drugs directly to the lesion, thereby helping reduce dosage and side effects. iv) IDDSs enable personalized drug delivery according to patient needs. The high demand for such systems has prompted scientists to make efforts to develop intelligent IDDS. In this review, several common stimulus-responsive mechanisms including endogenous (e.g., pH, reactive oxygen species, proteins, etc.) and exogenous stimuli (e.g., light, sound, electricity, magnetism, etc.), are given in detail. Besides, several types of IDDS reported in recent years are reviewed, including various stimulus-responsive systems based on the above mechanisms, radio frequency-controlled IDDS, "closed-loop" IDDS, self-powered IDDS, etc. Finally, the advantages and disadvantages of various IDDS, bottleneck problems, and possible solutions are analyzed to provide directions for subsequent research.
Collapse
Affiliation(s)
- Guang-Qin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Junyi Liu
- Albany Medical College, New York, 12208, USA
| | - Yu-Lin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
6
|
Li G, Wu S, Liu J, Wang K, Chen X, Liu H. Narrow Bandgap Schottky Heterojunction Sonosensitizer with High Electron-Hole Separation Boosted Sonodynamic Therapy in Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401252. [PMID: 38549283 DOI: 10.1002/adma.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Indexed: 04/11/2024]
Abstract
Sonodynamic therapy (SDT) is applied to bladder cancer (BC) given its advantages of high depth of tissue penetration and nontoxicity due to the unique anatomical location of the bladder near the abdominal surface. However, low electron-hole separation efficiency and wide bandgap of sonosensitizers limit the effectiveness of SDT. This study aims to develop a TiO2-Ru-PEG Schottky heterojunction sonosensitizer with high electron-hole separation and narrow bandgap for SDT in BC. Density functional theory (DFT) calculations and experiments collectively demonstrate that the bandgap of TiO2-Ru-PEG is reduced due to the Schottky heterojunction with the characteristic of crystalline-amorphous interface formed by the deposition of ruthenium (Ru) within the shell layer of TiO2. Thanks to the enhancement of oxygen adsorption and the efficient separation of electron-hole pairs, TiO2-Ru-PEG promotes the generation of reactive oxygen species (ROS) under ultrasound (US) irradiation, resulting in cell cycle arrest and apoptosis of bladder tumor cells. The in vivo results prove that TiO2-Ru-PEG boosted the subcutaneous and orthotopic bladder tumor models while exhibiting good safety. This study adopts the ruthenium complex for optimizing sonosensitizers, contributing to the progress of SDT improvement strategies and presenting a paradigm for BC therapy.
Collapse
Affiliation(s)
- Guanlin Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Sicheng Wu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
7
|
Rho S, Sanders HS, Smith BD, O'Sullivan TD. Miniature wireless LED-device for photodynamic-induced cell pyroptosis. Photodiagnosis Photodyn Ther 2024; 47:104209. [PMID: 38734196 PMCID: PMC11336689 DOI: 10.1016/j.pdpdt.2024.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The inability of visible light to penetrate far through biological tissue limits its use for phototherapy and photodiagnosis of deep-tissue sites of disease. This is unfortunate because many visible dyes are excellent photosensitizers and photocatalysts that can induce a wide range of photochemical processes, including photogeneration of reactive oxygen species. One potential solution is to bring the light source closer to the site of disease by using a miniature implantable LED. With this goal in mind, we fabricated a wireless LED-based device (volume of 23 mm3) that is powered by RF energy and emits light with a wavelength of 573 nm. It has the capacity to excite the green absorbing dye Rose Bengal, which is an efficient type II photosensitizer. The wireless transfer of RF power is effective even when the device is buried in chicken breast and located 6 cm from the transmitting antenna. The combination of a wireless device as light source and Rose Bengal as photosensitizer was found to induce cell death of cultured HT-29 human colorectal adenocarcinoma cells. Time-dependent generation of protruding bubbles was observed in the photoactivated cells suggesting cell death by light-induced pyroptosis and supporting evidence was gained by cell staining with the fluorescence probes Annexin-V FITC and Propidium Iodide. The results reveal a future path towards a wireless implanted LED-based device that can trigger photodynamic immunogenic cell death in deep-seated cancerous tissue.
Collapse
Affiliation(s)
- Sunghoon Rho
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA
| | - Hailey S Sanders
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Thomas D O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA.
| |
Collapse
|
8
|
Chen W, Wang Y, Hu H, Zhu Y, Zhao H, Wu J, Ju H, Zhang Q, Guo H, Liu Y. NIR-II light powered hydrogel nanomotor for intravesical instillation with enhanced bladder cancer therapy. NANOSCALE 2024; 16:10273-10282. [PMID: 38717507 DOI: 10.1039/d4nr01128g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Intravesical instillation is the common therapeutic strategy for bladder cancer. Besides chemo drugs, nanoparticles are used as intravesical instillation reagents, offering appealing therapeutic approaches for bladder cancer treatment. Metal oxide nanoparticle based chemodynamic therapy (CDT) converts tumor intracellular hydrogen peroxide to ROS with cancer cell-specific toxicity, which makes it a promising approach for the intravesical instillation of bladder cancer. However, the limited penetration of nanoparticle based therapeutic agents into the mucosa layer of the bladder wall poses a great challenge for the clinical application of CDT in intravesical instillation. Herein, we developed a 1064 nm NIR-II light driven hydrogel nanomotor for the CDT for bladder cancer via intravesical instillation. The hydrogel nanomotor was synthesized via microfluidics, wrapped with a lipid bilayer, and encapsulates CuO2 nanoparticles as a CDT reagent and core-shell structured Fe3O4@Cu9S8 nanoparticles as a fuel reagent with asymmetric distribution in the nanomotor (LipGel-NM). An NIR-II light irradiation of 1064 nm drives the active motion of LipGel-NMs, thus facilitating their distribution in the bladder and deep penetration into the mucosa layer of the bladder wall. After FA-mediated endocytosis in bladder cancer cells, CuO2 is released from LipGel-NMs due to the acidic intracellular environment for CDT. The NIR-II light powered active motion of LipGel-NMs effectively enhances CDT, providing a promising strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Wei Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, PR China
| | - Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Hao Hu
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, PR China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Qing Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, PR China
| | - Hongqian Guo
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, PR China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Liu J, Sun B, Li W, Kim HJ, Gan SU, Ho JS, Rahmat JNB, Zhang Y. Wireless sequential dual light delivery for programmed PDT in vivo. LIGHT, SCIENCE & APPLICATIONS 2024; 13:113. [PMID: 38744817 PMCID: PMC11094163 DOI: 10.1038/s41377-024-01437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Using photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy. Therefore, a smart nanocarrier system which can be degraded by light, followed by photosensitizer activation can potentially overcome these limitations and enhance the PDT efficacy. A light-sensitive polymer nanocarrier encapsulating photosensitizer (RB-M) was synthesized. An implantable wireless dual wavelength microLED device which delivers the two light wavelengths sequentially was developed to programmatically control the release and activation of the loaded photosensitizer. Two transmitter coils with matching resonant frequencies allow activation of the connected LEDs to emit different wavelengths independently. Optimal irradiation time, dose, and RB-M concentration were determined using an agent-based digital simulation method. In vitro and in vivo validation experiments in an orthotopic rat liver hepatocellular carcinoma disease model confirmed that the nanocarrier rupture and sequential low dose light irradiation strategy resulted in successful PDT at reduced photosensitizer and irradiation dose, which is a clinically significant event that enhances treatment safety.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bowen Sun
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Wenkai Li
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Han-Joon Kim
- Department of Electrical and Computer Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea
| | - Shu Uin Gan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - John S Ho
- Department of Electrical and Computer Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119276, Singapore
| | - Juwita Norasmara Bte Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Tay Z, Kim HJ, Ho JS, Olivo M. A Magnetic Particle Imaging Approach for Minimally Invasive Imaging and Sensing With Implantable Bioelectronic Circuits. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1740-1752. [PMID: 38157469 DOI: 10.1109/tmi.2023.3348149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose. We show how to easily modify common implantable devices to be imaged by MPI by encapsulating and magnetically-coupling magnetic nanoparticles (SPIOs) to the device circuit. These modified implantable devices not only provide spatial information via MPI, but also couple to our handheld MPI reader to transmit sensor information by modulating harmonic signals from magnetic nanoparticles via switching or frequency-shifting with resistive or capacitive sensors. This paper provides proof-of-concept of an optimized MPI imaging technique for implantable devices to extract spatial information as well as other information transmitted by the implanted circuit (such as biosensing) via encoding in the magnetic particle spectrum. The 4D images present 3D position and a changing color tone in response to a variable biometric. Biophysical sensing via bioelectronic circuits that take advantage of the unique imaging properties of MPI may enable a wide range of minimally invasive applications in biomedicine and diagnosis.
Collapse
|
11
|
Li Y, Chen Z, Liu Y, Liu Z, Wu T, Zhang Y, Peng L, Huang X, Huang S, Lin X, Xie X, Jiang L. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices. Natl Sci Rev 2024; 11:nwae062. [PMID: 38628571 PMCID: PMC11020258 DOI: 10.1093/nsr/nwae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
The limited lifespan of batteries is a challenge in the application of implantable electronic devices. Existing wireless power technologies such as ultrasound, near-infrared light and magnetic fields cannot charge devices implanted in deep tissues, resulting in energy attenuation through tissues and thermal generation. Herein, an ultra-low frequency magnetic energy focusing (ULFMEF) methodology was developed for the highly effective wireless powering of deep-tissue implantable devices. A portable transmitter was used to output the low-frequency magnetic field (<50 Hz), which remotely drives the synchronous rotation of a magnetic core integrated within the pellet-like implantable device, generating an internal rotating magnetic field to induce wireless electricity on the coupled coils of the device. The ULFMEF can achieve energy transfer across thick tissues (up to 20 cm) with excellent transferred power (4-15 mW) and non-heat effects in tissues, which is remarkably superior to existing wireless powering technologies. The ULFMEF is demonstrated to wirelessly power implantable micro-LED devices for optogenetic neuromodulation, and wirelessly charged an implantable battery for programmable electrical stimulation on the sciatic nerve. It also bypassed thick and tough protective shells to power the implanted devices. The ULFMEF thus offers a highly advanced methodology for the generation of wireless powered biodevices.
Collapse
Affiliation(s)
- Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zijian Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
12
|
Cui X, Li X, Peng C, Qiu Y, Shi Y, Liu Y, Fei JF. Beyond External Light: On-Spot Light Generation or Light Delivery for Highly Penetrated Photodynamic Therapy. ACS NANO 2023; 17:20776-20803. [PMID: 37874930 DOI: 10.1021/acsnano.3c05619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
External light sources, such as lasers, light emitting diodes (LEDs) and lamps, are widely applied in photodynamic therapy (PDT); however, their use is severely limited by the nature of shallow tissue penetration depth. The recent exploration of light delivery or local generation on tumor sites has attracted much attention, owing to the fact that these systems are significantly endowed with high tissue penetration. In this review, we briefly introduced the principle of "on-spot light generation or delivery systems" in PDT. These systems are divided into different categories: (1) implantable luminescence, (2) mechanoluminescence, (3) electrochemiluminescence, (4) Cerenkov luminescence, (5) chemiluminescence, and (6) bioluminescence. Finally, their applications, advantages, and disadvantages in PDT will be appropriately summarized and further discussed in detail. We believe that this review will provide general guidance for the further design of light generation or delivery systems and clinical studies for PDT-mediated cancer treatments with unparalleled merits.
Collapse
Affiliation(s)
- Xiao Cui
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Xiang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yuanhui Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ji-Feng Fei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
13
|
Sun B, Liu J, Kim HJ, Rahmat JNB, Neoh KG, Zhang Y. Light-responsive smart nanocarriers for wirelessly controlled photodynamic therapy for prostate cancers. Acta Biomater 2023; 171:553-564. [PMID: 37739246 DOI: 10.1016/j.actbio.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Photodynamic therapy (PDT) is an effective non-invasive or minimally invasive treatment method against different tumors. Loading photosensitizers in nanocarriers can potentially increase their accumulation in tumor sites. However, the PDT efficacy may be hindered because of self-quenching of the encapsulated photosensitizer and the small diffusion radii of the generated reactive oxygen species (ROS). Herein, light responsive nano assemblies composed of (Polyethylene glycol)-block-poly(4,5-dimethoxy-2-nitrobenzylmethacrylate) (PEG-b-PNBMA) were designed and loaded with the photosensitizer, Rose Bengal lactone (RB), to act as a smart nanocarrier (RB-M) for the delivery of the photosensitizer. A wirelessly activated light-emitting diode (LED) implant was designed to programmatically induce the release of the loaded RB first, followed by activating PDT after diffusion of RB into the cytoplasm. The results showed that sequential '405-580 nm' irradiation of the RB-M treated 22RV1 cells resulted in the highest PDT outcome among different irradiation protocols. The combination of this smart nanocarrier and sequential '405-580 nm' irradiation strategy exhibited good PDT efficacy against 2D 22RV1 prostate cancer cells as well as 3D cancer cell spheroids. This platform overcomes the light penetration limitations in PDT, and can potentially be applied in cancer bearing patients who are unfit for chemotherapy. STATEMENT OF SIGNIFICANCE: Nanocarriers for the delivery of photosensitizer in photodynamic therapy may result in relatively low therapeutic efficacy because of self-quenching of the encapsulated photosensitizer and the small diffusion radii of the generated reactive oxygen species (ROS). Light responsive smart nanocarriers can potentially overcome this challenge. In this study, a light responsive polymer (Polyethylene glycol)-block-poly(4,5-dimethoxy-2-nitrobenzylmethacrylate) (PEG-b-PNBMA) was synthesized and utilized to fabricate the smart nanocarrier. A wirelessly activated light-emitting diode (LED) implant was designed for light delivery in deep tissue. This new approach permits wirelessly and programmatically control of photosensitizer release and PDT activation under deep tissue, thus significantly enhancing PDT efficacy against prostate cancer cells as well as 3D cancer cell spheroids. This design should have a significant impact on controllable PDT under deep tissue.
Collapse
Affiliation(s)
- Bowen Sun
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jiayi Liu
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Han Joon Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea
| | - Juwita Norasmara Bte Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Fu H, Lu Q, Zhang Y, Wan P, Xu H, Liao C, Sun Y, Deng Y, Yan W, Mei Q. Multi-target responsive nanoprobe with cellular-level accuracy for spatiotemporally selective photodynamic therapy. Mikrochim Acta 2023; 190:448. [PMID: 37872299 DOI: 10.1007/s00604-023-06022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Photodynamic therapy is known for its non-invasiveness to significantly reduce undesired side effects on patients. However, the infiltration and invasiveness of tumor growth are still beyond the specificity of traditional light-controlled photodynamic therapy (PDT), which lacks cellular-level accuracy to tumor cells, possibly leading to "off-target" damage to healthy tissues such as the skin or immune cells infiltrated. Here, upconversion nanoparticles (UCNPs) were co-encapsulated with manganese dioxide (MnO2) by amphiphilic polymers poly(styrene-co-methyl acrylate) (PSMA) and further coated with photosensitizer (riboflavin)-loaded mesoporous silica (C@S/V). The C@S/V nanoprobes exhibited shielded upconversion luminescence in normal conditions (pH 7.4, no hydroperoxide (H2O2)) under 980-nm irradiation and thus minimal reactive oxygen production from riboflavin. However, the excess H2O2 (1 mM) and acidic environment (pH 5.5) could decompose the MnO2 within the C@S/V, resulting in remarkable enhancement of upconversion luminescence and a favorable hypoxia-relieving condition for PDT, providing a spatiotemporal signal for therapy initiation. The C@S/V nanoprobes were applied to the co-culture of normal cells (HEK293) and pancreatic cancer cells (Panc02) and performed a selective killing on Panc02 under the 980-nm irradiation. By using the "double-safety" strategy, a responsive C@S/V nanoprobe was designed by the selective activation of acidic and H2O2-rich conditions and 980-nm irradiation for spatiotemporally selective photodynamic therapy with cellular-level accuracy.
Collapse
Affiliation(s)
- Huimin Fu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| | - Pingping Wan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Huajian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Cheng Liao
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Yun Deng
- Department of Stomatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wangxiang Yan
- Department of Stomatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| |
Collapse
|
15
|
Wu J, Wei W, Ahmad W, Li S, Ouyang Q, Chen Q. Enhanced detection of endocrine disrupting chemicals in on-chip microfluidic biosensors using aptamer-mediated bridging flocculation and upconversion luminescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132025. [PMID: 37453351 DOI: 10.1016/j.jhazmat.2023.132025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can lead to detrimental impacts on human health, making their detection a critical issue. A novel approach utilizing on-chip microfluidic biosensors was developed for the simultaneous detection of two EDCs, namely, bisphenol A (BPA) and diethylstilbestrol (DES), based on upconversion nanoparticles doped with thulium (Tm) and erbium (Er), respectively. From the perspective of single nanoparticles, the construction of an active core-inert shell structure enhanced the luminescence of nanoparticles by 2.28-fold (Tm) and 1.72-fold (Er). From the perspective of the nanoparticle population, the study exploited an aptamer-mediated bridging flocculation mechanism and effectively enhanced the upconversion luminescence of biosensors by 8.94-fold (Tm) and 7.10-fold (Er). A chip with 138 tangential semicircles or quarter-circles was designed and simulated to facilitate adequate mixing, reaction, magnetic separation, and detection conditions. The on-chip microfluidic biosensor demonstrated exceptional capabilities for the simultaneous detection of BPA and DES with ultrasensitive detection limits of 0.0076 µg L-1, and 0.0131 µg L-1, respectively. The first reported aptamer-mediated upconversion nanoparticle bridging flocculation provided enhanced luminescence and detection sensitivity for biosensors, as well as offering a new perspective to address the instability of nanobiosensors.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuhua Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
16
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
17
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
18
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
19
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Zhang C, Bai X, Peng X, Shi W, Li Y, Chen G, Yu H, Feng Z, Deng Y. Starvation-induced long non-coding RNAs are significant for prognosis evaluation of bladder cancer. Aging (Albany NY) 2022; 14:10067-10080. [PMID: 36541918 PMCID: PMC9831724 DOI: 10.18632/aging.204444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Starving intratumoral microenvironment prominently alters genic profiles including long non-coding RNAs (lncRNAs), which further regulate bladder cancer (BCa) malignant biological properties, such as invasion and migration. METHODS Transcriptome RNA-sequencing data of 414 BCa tumor tissues and 19 normal tissues were obtained from TCGA database and paired samples of 132 BCa patients. A chain of in vitro validations such as qPCR, migration and invasion assays were performed to reveal the clinical relevance of AC011472.4 and AL157895.1. RESULTS A total of 11 lncRNAs were identified as starvation-related lncRNAs, of which AC011472.4 and AL157895.1 were relevant to overall survival of BCa patients. Besides, a starvation-related risk score model was established based on the levels of AC011472.4 and AL157895.1. BCa patients with higher levels of AL157895.1 were divided into the high-risk group and usually obtained higher mortality rate, but AC011472.4 was contrary. AL157895.1 expressed highly in BCa cell lines and tumour tissues, especially in patients with the advanced grade, stage and T-stage, while AC011472.4 showed the reversed result. Moreover, increased level of AL157895.1 was remarkably correlated to T-stage, muscle invasion status and distant metastasis. SiRNAs-mediated silence of AC011472.4 and AL157895.1 respectively increased and diminished invasion and migration properties of BCa cells. CONCLUSIONS In this study, we highlight the significant roles of AC011472.4 and AL157895.1 on evaluating prognoses of BCa patients and validate their correlation with various clinical parameters. These findings provide an appropriate risk score model for BCa clinical decision making.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Wei Shi
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing 400016, China
| | - Yuanzhong Deng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|