1
|
Fang X, Zhou D, An Y, Dai Z, Sun D, Tong Y. A simple two-dimensional metal-organic framework-based phototherapy nanoplatform with a triple-synergistic mechanism for enhanced wound infection treatment. J Colloid Interface Sci 2025; 694:137656. [PMID: 40288276 DOI: 10.1016/j.jcis.2025.137656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Selecting an appropriate treatment for bacterial infections is critical. However, the rising prevalence of antimicrobial resistance has rendered many existing therapies less effective, highlighting the urgent need for novel antimicrobial strategies that are less prone to inducing antimicrobial resistance. Herein, we propose a simple, energy-efficient, photoresponsive antibacterial strategy based on metal-organic frameworks. Specifically, we developed an Au@Cu-THQ system activated by near-infrared laser irradiation, capable of exerting a synergistic triple-mode antibacterial effect-photothermal, photodynamic, and glutathione (GSH) depletion for the effective treatment of bacterial infections. The photothermal effect notably enhances the generation of reactive oxygen species and accelerates GSH depletion within bacterial cells, leading to a substantial disruption of their antioxidant defense systems and significantly amplifying the photodynamic therapeutic effect. Moreover, this material demonstrated excellent and stable photothermal performance both in vitro and in vivo, characterized by high photothermal conversion efficiency and effective GSH depletion activity. These features contribute to its potent antibacterial and anti-inflammatory effects, offering a promising multimodal strategy for the future development of in vivo anti-infective formulations.
Collapse
Affiliation(s)
- Xuankun Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dandan Zhou
- The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen 518133, China
| | - Yiwei An
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China.
| | - Yanli Tong
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
da Silva Santos É, Uchida DT, Bruschi ML. Sericin from Bombyx Mori as a By-product for DLP 3D Printing in Pharmaceutical and Biomedical Applications. AAPS PharmSciTech 2025; 26:111. [PMID: 40246786 DOI: 10.1208/s12249-025-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sericin, a silk-derived protein, has emerged as a potential material for Digital Light Processing (DLP) printing, particularly in uses requiring biocompatibility and sustainability. Sericin is a candidate for developing durable and precise 3D-printed structures due to its natural origin and intrinsic properties like film-forming ability and cross-linking potential. Its biocompatibility makes it suitable for medical applications, such as targeted delivery of anticancer drugs or creation of therapeutic supports directly on affected skin, orthodontic and cosmetic biomaterials, disease modulation, wound healing, antioxidant and antimicrobial applications, and regenerative medicine. Additionally, sericin can strengthen and stabilize printed structures while maintaining environmental integrity, aligning with the growing demand for eco-friendly materials in advanced manufacturing. However, formulating sericin-based resins for DLP printing presents challenges, including optimizing cross-linking and curing processes for obtaining desired properties of material. Overcoming these challenges could unlock the full potential of sericin in diverse fields, such as tissue engineering, where biocompatibility and precise structural integrity are critical. This review investigates the potential of sericin-based resins for 3D printing, emphasizing the protein's compatibility with photopolymerizable systems and its capacity to improve the overall performance of DLP-printed materials. Further research is essential to refine sericin-based formulations, enabling their broader application in 3D printing technologies. By examining the unique characteristics of sericin, including its origins and material properties, this review underscores the protein's potential to drive innovation in sustainable manufacturing. Ultimately, sericin offers a viable alternative to synthetic resins and holds promise for advancing both biomedical and environmental applications through innovative 3D printing technologies.
Collapse
Affiliation(s)
- Éverton da Silva Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Denise Tiemi Uchida
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
3
|
Wang H, Zhang J, Li Z, Liu J, Chang H, Jia S, Di Z, Liu H, Wang J, Gao D, Wang C, Li G, Zhao X. NIR-programmable 3D-printed shape-memory scaffold with dual-thermal responsiveness for precision bone regeneration and bone tumor management. J Nanobiotechnology 2025; 23:300. [PMID: 40247322 PMCID: PMC12007331 DOI: 10.1186/s12951-025-03375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Clinically, intraoperative treatment of bone tumors presents several challenges, including the effective inactivation of tumors and filling of irregular bone defects after tumor removal. In this study, intelligent thermosensitive composite materials with shape-memory properties were constructed using polylactic acid (PLA) and polycaprolactone (PCL), which have excellent biocompatibility and degradability. Additionally, beta-tricalcium phosphate (β-TCP), with its osteogenic properties, and magnesium (Mg) powder, with its photothermal and bone-promoting abilities, were incorporated to improve the osteogenic potential of the composite and enable the material to respond intelligently to near-infrared (NIR) light. Utilizing 3D printing technology, the composite material was prepared into an NIR-responsive shape-memory bone-filling implant that deforms when the scaffold temperature increases to 48 ℃ under NIR laser irradiation. Moreover, at a lower temperature of 42 ℃, mild photothermal therapy promotes macrophage polarization toward the M2 phenotype. This process regulates the secretion of interleukin (IL)-4, IL-10, tumor necrosis factor-α, IL-6, and bone morphogenetic protein (BMP)-2, reducing local inflammation, enhancing the release of pro-healing factors, and improving osteogenesis. Overall, this innovative scaffold is a promising and efficient treatment for filling irregular bone defects after bone tumor surgery.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiaxin Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zuhao Li
- Department of Orthopaedics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jiaqi Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Haoran Chang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Shipu Jia
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zexin Di
- Department of Orthopaedics, School of Economics and Management, Beihua University, Jilin, 132013, China
| | - He Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Delong Gao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China.
| | - Chenyu Wang
- Department of Plastic & Reconstruct Surgery, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guiwei Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China.
| | - Xin Zhao
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
4
|
Jeon Y, Kim M, Song KH. Development of Hydrogels Fabricated via Stereolithography for Bioengineering Applications. Polymers (Basel) 2025; 17:765. [PMID: 40292646 PMCID: PMC11945500 DOI: 10.3390/polym17060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The architectures of hydrogels fabricated with stereolithography (SLA) 3D printing systems have played various roles in bioengineering applications. Typically, the SLA systems successively illuminated light to a layer of photo-crosslinkable hydrogel precursors for the fabrication of hydrogels. These SLA systems can be classified into point-scanning types and digital micromirror device (DMD) types. The point-scanning types form layers of hydrogels by scanning the precursors with a focused light, while DMD types illuminate 2D light patterns to the precursors to form each hydrogel layer at once. Overall, SLA systems were cost-effective and allowed the fabrication of hydrogels with good shape fidelity and uniform mechanical properties. As a result, hydrogel constructs fabricated with the SLA 3D printing systems were used to regenerate tissues and develop lab-on-a-chip devices and native tissue-like models.
Collapse
Affiliation(s)
- Youngjin Jeon
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
5
|
Lee E, Seong Y, Jeong J, Ji Y, Eom J, Park C, Kim J, Park S, Chung JH. Evaluation of physicochemical property changes in 3D-printed biodegradable medical devices under simulated oral physiological conditions. Biomed Mater 2025; 20:025007. [PMID: 39844463 DOI: 10.1088/1748-605x/ada85f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Biodegradable medical devices undergo degradation following implantation, potentially leading to clinical failure. Consequently, it is necessary to assess the change in their properties post-implantation. However, a standardized method for the precise evaluation of the changes in their physicochemical properties is currently lacking. In this study, we aimed to establish precisely simulated oral physiological conditions (SOPCs) and investigate the physicochemical property changes to predict the performance alterations of biodegradable dental barrier membranes (BDBMs) following human implantation. We investigated changes in physicochemical properties of BDBM after exposure to SOPC for 24 weeks. When BDBM was exposed to SOPC for 24 weeks, there was a significant decrease in mass (-1.37%), molecular weight (-19.54%) and tensile load (-72.84%). Among the physicochemical properties, molecular weight decreased similarly after 24 weeks of implantation in rats (-15.78%) and after 24 weeks of exposure to SOPC (-19.54%). Changes in the physicochemical properties of BDBM in simulatedin vitrooral conditions and in thein vivoenvironment were similar. Overall, the evaluation of physicochemical property changes after exposing BDBM to the proposed SOPC demonstrates novelty in its ability to accurately predict performance changes post-implantation. This approach may provide significant insights not only for the development of BDBM but also for various types of biodegradable medical devices.
Collapse
Affiliation(s)
- Eungtae Lee
- Medical Device Research Division, Pharmaceutical and Medical Device Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonguk Seong
- Medical Device Research Division, Pharmaceutical and Medical Device Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Jihee Jeong
- Medical Device Research Division, Pharmaceutical and Medical Device Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Yongbin Ji
- Medical Device Research Division, Pharmaceutical and Medical Device Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Joonho Eom
- Medical Device Research Division, Pharmaceutical and Medical Device Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Changwon Park
- Medical Device Research Division, Pharmaceutical and Medical Device Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Jinhyun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangbae Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Wei K, Tang C, Ma H, Fang X, Yang R. 3D-printed microrobots for biomedical applications. Biomater Sci 2024; 12:4301-4334. [PMID: 39041236 DOI: 10.1039/d4bm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (e.g., drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Zhang J, Liu S, Wang X, Zhang X, Hu X, Zhang L, Sun Q, Liu X. 4D Printable liquid crystal elastomers with restricted nanointerfacial slippage for long-term-cyclic-stability photothermal actuation. MATERIALS HORIZONS 2024; 11:2483-2493. [PMID: 38477135 DOI: 10.1039/d3mh02230g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Liquid crystal elastomers (LCEs) blended with photothermal nanofillers can reversibly and rapidly deform their shapes under external optical stimuli. However, nanointerfacial slipping inevitably occurs between the LCE molecules and the nanofillers due to their weak physical interactions, eventually resulting in cyclic instability. This work presents a versatile strategy to fabricate nanointerfacial-slipping-restricted photoactuation elastomers by chemically bonding the nanofillers into a thermally actuatable liquid crystal network. We experimentally and theoretically investigated three types of metal-based nanofillers, including zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, and two-dimensional (2D) nanosheets. The toughly crosslinked nanointerface allows for remarkably promoted interfacial thermal conductivity and stress transfer. Therefore, the resultant actuators enable the realization of long-term-cyclic-stability 4D-printed flexible intelligent systems such as the optical gripper, crawling robot, light-powered self-sustained windmill, butterflies with fluttering wings, and intelligent solar energy collection system.
Collapse
Affiliation(s)
- Juzhong Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuiren Liu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xianghong Wang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoguang Hu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Linlin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Qingqing Sun
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuying Liu
- School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Li YF, Chen ZW, Xie ZF, Wang SS, Xie YM, Zhang ZW. Recent Development of Biodegradable Occlusion Devices for Intra-Atrial Shunts. Rev Cardiovasc Med 2024; 25:159. [PMID: 39076475 PMCID: PMC11267192 DOI: 10.31083/j.rcm2505159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/26/2023] [Accepted: 12/18/2023] [Indexed: 07/31/2024] Open
Abstract
Atrial septal defect (ASD) is the third most common type of structural congenital heart defect. Patent foramen ovale (PFO) is an anatomical anomaly in up to 25% of the general population. With the innovation of occlusion devices and improvement of transcatheter techniques, percutaneous closure has become a first-line therapeutic alternative for treatment of ASD and PFO. During the past few decades, the development of biodegradable occlusion devices has become a promising direction for transcatheter closure of ASD/PFO due to their biodegradability and improved biocompatibility. The purpose of this review is to comprehensively summarize biodegradable ASD/PFO occlusion devices, regarding device design, materials, biodegradability, and evaluation of animal or clinical experiments (if available). The current challenges and the research direction for the development of biodegradable occluders for congenital heart defects are also discussed.
Collapse
Affiliation(s)
- Yi-Fan Li
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, 510100 Guangzhou, Guangdong, China
| | - Ze-Wen Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, 510100 Guangzhou, Guangdong, China
| | - Zhao-Feng Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, 510100 Guangzhou, Guangdong, China
| | - Shu-Shui Wang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, 510100 Guangzhou, Guangdong, China
| | - Yu-Mei Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, 510100 Guangzhou, Guangdong, China
| | - Zhi-Wei Zhang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, 510100 Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Yu S, Sadaba N, Sanchez-Rexach E, Hilburg SL, Pozzo LD, Altin-Yavuzarslan G, Liz-Marzán LM, de Aberasturi DJ, Sardon H, Nelson A. 4D Printed Protein-AuNR Nanocomposites with Photothermal Shape Recovery. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2311209. [PMID: 38966003 PMCID: PMC11221775 DOI: 10.1002/adfm.202311209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 07/06/2024]
Abstract
4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.
Collapse
Affiliation(s)
- Siwei Yu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Eva Sanchez-Rexach
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain; Biomedical Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain; Ikerbaque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain; Biomedical Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain; Ikerbaque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Mahjoubnia A, Cai D, Wu Y, King SD, Torkian P, Chen AC, Talaie R, Chen SY, Lin J. Digital light 4D printing of bioresorbable shape memory elastomers for personalized biomedical implantation. Acta Biomater 2024; 177:165-177. [PMID: 38354873 PMCID: PMC10948293 DOI: 10.1016/j.actbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Four-dimensional (4D) printing unlocks new potentials for personalized biomedical implantation, but still with hurdles of lacking suitable materials. Herein, we demonstrate a bioresorbable shape memory elastomer (SME) with high elasticity at both below and above its phase transition temperature (Ttrans). This SME can be digital light 3D printed by co-polymerizing glycerol dodecanoate acrylate prepolymer (pre-PGDA) with acrylic acid monomer to form crosslinked Poly(glycerol dodecanoate acrylate) (PGDA)-Polyacrylic acid (PAA), or PGDA-PAA network. The printed complex, free-standing 3D structures with high-resolution features exhibit shape programming properties at a physiological temperature. By tuning the pre-PGDA weight ratios between 55 wt% and 70 wt%, Ttrans varies between 39.2 and 47.2 ℃ while Young's moduli (E) range 40-170 MPa below Ttrans with fractural strain (εf) of 170 %-200 %. Above Ttrans, E drops to 1-1.82 MPa which is close to those of soft tissue. Strikingly, εf of 130-180 % is still maintained. In vitro biocompatibility test on the material shows > 90 % cell proliferation and great cell attachment. In vivo vascular grafting trials underline the geometrical and mechanical adaptability of these 4D printed constructs in regenerating the aorta tissue. Biodegradation of the implants shows the possibility of their full replacement by natural tissue over time. To highlight its potential for personalized medicine, a patient-specific left atrial appendage (LAA) occluder was printed and implanted endovascularly into an in vitro heart model. STATEMENT OF SIGNIFICANCE: 4D printed shape-memory elastomer (SME) implants particularly designed and manufactured for a patient are greatly sought-after in minimally invasive surgery (MIS). Traditional shape-memory polymers used in these implants often suffer from issues like unsuitable transition temperatures, poor biocompatibility, limited 3D design complexity, and low toughness, making them unsuitable for MIS. Our new SME, with an adjustable transition temperature and enhanced toughness, is both biocompatible and naturally degradable, particularly in cardiovascular contexts. This allows implants, like biomedical scaffolds, to be programmed at room temperature and then adapt to the body's physiological conditions post-implantation. Our studies, including in vivo vascular grafts and in vitro device implantation, highlight the SME's effectiveness in aortic tissue regeneration and its promising applications in MIS.
Collapse
Affiliation(s)
- Alireza Mahjoubnia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA
| | - Yuchao Wu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA
| | - Skylar D King
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA
| | - Pooya Torkian
- Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, 55455, USA
| | - Andy C Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA; North Oconee High School, Bogart, GA 30622, USA
| | - Reza Talaie
- Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, 55455, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA.
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA.
| |
Collapse
|
11
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
12
|
Hu Y, Tang H, Xu N, Kang X, Wu W, Shen C, Lin J, Bao Y, Jiang X, Luo Z. Adhesive, Flexible, and Fast Degradable 3D-Printed Wound Dressings with a Simple Composition. Adv Healthc Mater 2024; 13:e2302063. [PMID: 37916920 DOI: 10.1002/adhm.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/15/2023] [Indexed: 11/03/2023]
Abstract
3D printing technology has revolutionized the field of wound dressings, offering tailored solutions with mechanical support to facilitate wound closure. In addition to personalization, the intricate nature of the wound healing process requires wound dressing materials with diverse properties, such as moisturization, flexibility, adhesion, anti-oxidation and degradability. Unfortunately, current materials used in digital light processing (DLP) 3D printing have been inadequate in meeting these crucial criteria. This study introduces a novel DLP resin that is biocompatible and consists of only three commonly employed non-toxic compounds in biomaterials, that is, dopamine, poly(ethylene glycol) diacrylate, and N-vinylpyrrolidone. Simple as it is, this material system fulfills all essential functions for effective wound healing. Unlike most DLP resins that are non-degradable and rigid, this material exhibits tunable and rapid degradation kinetics, allowing for complete hydrolysis within a few hours. Furthermore, the high flexibility enables conformal application of complex dressings in challenging areas such as finger joints. Using a difficult-to-heal wound model, the manifold positive effects on wound healing in vivo, including granulation tissue formation, inflammation regulation, and vascularization are substantiated. The simplicity and versatility of this material make it a promising option for personalized wound care, holding significant potential for future translation.
Collapse
Affiliation(s)
- Yu Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaowo Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chuhan Shen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Junsheng Lin
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yinyin Bao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
13
|
Ramezani M, Mohd Ripin Z. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. J Funct Biomater 2023; 14:347. [PMID: 37504842 PMCID: PMC10381284 DOI: 10.3390/jfb14070347] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
4D printing has emerged as a transformative technology in the field of biomedical engineering, offering the potential for dynamic, stimuli-responsive structures with applications in tissue engineering, drug delivery, medical devices, and diagnostics. This review paper provides a comprehensive analysis of the advancements, challenges, and future directions of 4D printing in biomedical engineering. We discuss the development of smart materials, including stimuli-responsive polymers, shape-memory materials, and bio-inks, as well as the various fabrication techniques employed, such as direct-write assembly, stereolithography, and multi-material jetting. Despite the promising advances, several challenges persist, including material limitations related to biocompatibility, mechanical properties, and degradation rates; fabrication complexities arising from the integration of multiple materials, resolution and accuracy, and scalability; and regulatory and ethical considerations surrounding safety and efficacy. As we explore the future directions for 4D printing, we emphasise the need for material innovations, fabrication advancements, and emerging applications such as personalised medicine, nanomedicine, and bioelectronic devices. Interdisciplinary research and collaboration between material science, biology, engineering, regulatory agencies, and industry are essential for overcoming challenges and realising the full potential of 4D printing in the biomedical engineering landscape.
Collapse
Affiliation(s)
- Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| | - Zaidi Mohd Ripin
- School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| |
Collapse
|
14
|
Chinnakorn A, Nuansing W, Bodaghi M, Rolfe B, Zolfagharian A. Recent progress of 4D printing in cancer therapeutics studies. SLAS Technol 2023; 28:127-141. [PMID: 36804175 DOI: 10.1016/j.slast.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a critical cause of global human death. Not only are complex approaches to cancer prognosis, accurate diagnosis, and efficient therapeutics concerned, but post-treatments like postsurgical or chemotherapeutical effects are also followed up. The four-dimensional (4D) printing technique has gained attention for its potential applications in cancer therapeutics. It is the next generation of the three-dimensional (3D) printing technique, which facilitates the advanced fabrication of dynamic constructs like programmable shapes, controllable locomotion, and on-demand functions. As is well-known, it is still in the initial stage of cancer applications and requires the insight study of 4D printing. Herein, we present the first effort to report on 4D printing technology in cancer therapeutics. This review will illustrate the mechanisms used to induce the dynamic constructs of 4D printing in cancer management. The recent potential applications of 4D printing in cancer therapeutics will be further detailed, and future perspectives and conclusions will finally be proposed.
Collapse
Affiliation(s)
- Atchara Chinnakorn
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wiwat Nuansing
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Bernard Rolfe
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
15
|
Chakka LRJ, Chede S. 3D printing of pharmaceuticals for disease treatment. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1040052. [PMID: 36704231 PMCID: PMC9871616 DOI: 10.3389/fmedt.2022.1040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Three-dimensional (3D) printing or Additive manufacturing has paved the way for developing and manufacturing pharmaceuticals in a personalized manner for patients with high volume and rare diseases. The traditional pharmaceutical manufacturing process involves the utilization of various excipients to facilitate the stages of blending, mixing, pressing, releasing, and packaging. In some cases, these excipients cause serious side effects to the patients. The 3D printing of pharmaceutical manufacturing avoids the need for excessive excipients. The two major components of a 3D printed tablet or dosage form are polymer matrix and drug component alone. Hence the usage of the 3D printed dosage forms for disease treatment will avoid unwanted side effects and provide higher therapeutic efficacy. With respect to the benefits of the 3D printed pharmaceuticals, the present review was constructed by discussing the role of 3D printing in producing formulations of various dosage forms such as fast and slow releasing, buccal delivery, and localized delivery. The dosage forms are polymeric tablets, nanoparticles, scaffolds, and films employed for treating different diseases.
Collapse
Affiliation(s)
- L. R. Jaidev Chakka
- College of Pharmacy, TheUniversity of Texas at Austin, Austin, TX, United States,Correspondence: L. R. Jaidev Chakka
| | - Shanthi Chede
- College of Pharmacy, University of Iowa, Iowa, IA, United States
| |
Collapse
|