1
|
Gao L, Liu Y, Su J, Liu K, Zhang H. Modulation of Near-Infrared Afterglow Luminescence in Inorganic Nanomaterials for Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419349. [PMID: 40062832 DOI: 10.1002/adma.202419349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/10/2025] [Indexed: 04/24/2025]
Abstract
Near-infrared afterglow luminescent inorganic nanomaterials (NIR-ALINs) possess the unique property of continuing to emit near-infrared (NIR) luminescence after excitation ceases. They demonstrate excellent photostability, deep tissue penetration, and high imaging signal-to-noise ratio (SNR). Additionally, NIR-ALINs can be re-excited in vivo using visible (Vis), NIR light or X-rays, which avoids the need for continuous in situ excitation, thus eliminating autofluorescence of biological tissues and reducing the tediousness of multiple injections. These features make NIR-ALINs particularly attractive for biological applications. In recent years, a series of NIR-ALINs with prolonged afterglow time and enhanced luminescence intensity have been discovered. However, the development of NIR-ALINs still faces significant challenges, as their NIR afterglow performance is usually insufficient to satisfy practical biological applications. There is still a lack of systematic analysis of the strategies for the regulation of NIR afterglow luminescence in inorganic nanomaterials. This review highlights the rational design and modulation strategies of NIR-ALINs, focusing on host substrate selection, trap engineering modulation and surface modification. Moreover, the biological applications of NIR-ALINs in bioimaging, bio-detection and disease therapy are summarized. Finally, the present challenges and perspectives in biological applications, such as insufficient afterglow properties and unclear biosafety, are also discussed.
Collapse
Affiliation(s)
- Linshuo Gao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang, 314100, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang, 314100, China
| |
Collapse
|
2
|
Mo JT, Chen XQ, Wang SH, Pan JJ, Li MY, Wang Z. Broadly excited red long persistent luminescence from hetero-ligand MOFs. Dalton Trans 2025; 54:5859-5867. [PMID: 40079408 DOI: 10.1039/d5dt00113g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Metal-organic frameworks (MOFs) have been considered as ideal platforms to achieve long persistent luminescence (LPL), to utilize as optical recording devices, security systems and sensors. Despite the rapid emergence, it is still a challenge to develop single-component red LPL MOFs. In this work, two hetero-ligand MOFs are synthesized using a D-π-A-type ligand (source of red phosphorescence) and a monocyclic carboxylic ligand (appropriate void constructer), which show efficient red LPL after removal of wide excitations at ambient conditions. Experiment and calculation suggest that the effective red LPL originates from the D-π-A-type ligand, while the auxiliary carboxylic ligand mediates the orientation/arrangement of the D-π-A linker in MOFs affecting phosphorescence. The MOFs are further used in the field of multiple message encryption, initiating a new perspective for designing new red LPL MOFs.
Collapse
Affiliation(s)
- Jun-Ting Mo
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Qi Chen
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Su-Hua Wang
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jun-Jie Pan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Meng-Yang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Zheng Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Kong B, Pan G, Wang M, Tang H, Lv Z, Sun S, Luo Y, You W, Xu W, Mao Y. Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415473. [PMID: 39804940 PMCID: PMC11884603 DOI: 10.1002/advs.202415473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er3+ ions doped Cs2NaYbCl6 nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration. The resulting NCs display strong static and dynamic colorful luminescence in response to ultraviolet, 980-nm laser, and X-ray. Additionally, the NCs exhibit distinct luminescent colors as the temperature increases from 330 to 430 K. Surprisingly, it also demonstrates the ability of the reversible emission modal and color in response to water. Theoretical calculations and experimental characterizations reveal that self-trapped exciton state (STEs), chlorine vacancy defects, and ladderlike 4f energy levels of Er3+ ions contribute to multimodal luminescence. More importantly, it has extremely remarkable environmental stability, which can be stored in the air for more than 18 months, showing promising commercial prospects. This work not only gives new insights into lanthanide-based metal halide NCs but also provides a new route for developing multimodal luminescent nanomaterials for anti-counterfeiting and encryption.
Collapse
Affiliation(s)
- Bingyin Kong
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Gencai Pan
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Mengke Wang
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Hongye Tang
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Zhipeng Lv
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Shiyu Sun
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Yuxin Luo
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Wenwu You
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs CommissionSchool of Physics and Materials EngineeringDalian Minzu UniversityDalian116600P. R. China
| | - Yanli Mao
- Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan ProvinceInternational Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceSchool of Physics and ElectronicsHenan UniversityKaifeng475004P. R. China
| |
Collapse
|
4
|
Chen T, Ma YJ, Xiao G, Fang X, Liu Y, Li K, Yan D. The trade-off anionic modulation in metal-organic glasses showing color-tunable persistent luminescence. MATERIALS HORIZONS 2024; 11:4951-4960. [PMID: 39045671 DOI: 10.1039/d4mh00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Ultralong room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials provide exciting opportunities for the rational design of persistent luminescence owing to their long-lived excitons. However, conventional rare-earth-based all-inorganic emitters involve high cost and harsh synthesis conditions, and purely organic systems may require complicated synthesis routes and tedious purification. Therefore, it is highly desirable to develop a cost-effective and easily manufacturable method for achieving color-tunable RTP-TADF with a long afterglow. Herein, we demonstrate a rational strategy to introduce different anions (Cl-, Br- and OAc- ions) into a Zn-based metal-organic scaffold, which can improve the crystal rigidity and achieve a well-balanced RTP-TADF. Both theoretical and experimental studies have demonstrated that the adjustment of different anions can effectively modulate the spin-orbit coupling (SOC) and the energy gap of singlet-triplet states (ΔEST) and then tailor the afterglow lifetime. Moreover, we prepared dye-doped metal-organic hybrid glasses with remarkable potential for the color-tunable afterglow. Therefore, this work not only provides a new horizon for modulating crystal and glass states with color/lifetime-tunable persistent luminescence, but also contributes to optical information storage and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kangjing Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
5
|
Xiao G, Wang X, Fang X, Du J, Jiang Y, Miao D, Yan D, Xu C. Simplifying complexity: integrating color science for predictable full-color and on-demand persistent luminescence using industrial disperse dyes. Chem Sci 2024:d4sc05741d. [PMID: 39364075 PMCID: PMC11446313 DOI: 10.1039/d4sc05741d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
Developing color-tunable ultralong room temperature phosphorescence (RTP) materials with variable afterglow is essential for applications in displays, sensors, information encryption, and optoelectronic devices. However, designing full-color ultralong RTP for persistent luminescence remains a significant challenge. Here, we propose a straightforward strategy to achieve predictable full-color afterglow using readily available disperse dyes in polymeric systems, via the phosphorescence resonance energy transfer (PRET) process. We incorporated the unconventional luminophore tetraacetylethylenediamine (TAED) into polyurethane (PU) to create a polymer host with green afterglow. By adding three typical disperse dyes as guests, we achieved a modulated afterglow covering the full visible light spectrum. Leveraging PRET processes between TAED and the disperse dyes, we achieved a prediction accuracy of 88.89% for afterglow color, surpassing well-developed coloration dye systems. This work thus introduces a novel method to obtain easily predictable ultralong RTP emission and establishes an on-demand design strategy for constructing disperse dye-based full-color afterglow, effectively linking fundamental color science to practical customization.
Collapse
Affiliation(s)
- Guowei Xiao
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Xiaoyan Wang
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jinmei Du
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Yang Jiang
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Dagang Miao
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Changhai Xu
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| |
Collapse
|
6
|
Zhang X, Suo H, Guo Y, Chen J, Wang Y, Wei X, Zheng W, Li S, Wang F. Continuous tuning of persistent luminescence wavelength by intermediate-phase engineering in inorganic crystals. Nat Commun 2024; 15:6797. [PMID: 39122769 PMCID: PMC11316030 DOI: 10.1038/s41467-024-51180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Multicolor tuning of persistent luminescence has been extensively studied by deliberately integrating various luminescent units, known as activators or chromophores, into certain host compounds. However, it remains a formidable challenge to fine-tune the persistent luminescence spectra either in organic materials, such as small molecules, polymers, metal-organic complexes and carbon dots, or in doped inorganic crystals. Herein, we present a strategy to delicately control the persistent luminescence wavelength by engineering sub-bandgap donor-acceptor states in a series of single-phase Ca(Sr)ZnOS crystals. The persistent luminescence emission peak can be quasi-linearly tuned across a broad wavelength range (500-630 nm) as a function of Sr/Ca ratio, achieving a precision down to ~5 nm. Theoretical calculations reveal that the persistent luminescence wavelength fine-tuning stems from constantly lowered donor levels accompanying the modified band structure by Sr alloying. Besides, our experimental results show that these crystals exhibit a high initial luminance of 5.36 cd m-2 at 5 sec after charging and a maximum persistent luminescence duration of 6 h. The superior, color-tunable persistent luminescence enables a rapid, programable patterning technique for high-throughput optical encryption.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- College of Physics Science & Technology, Hebei University, Baoding, 071002, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- College of Physics Science & Technology, Hebei University, Baoding, 071002, China
| | - Xiaohe Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shuohan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Liu Y, Cheng D, Wang B, Yang J, Hao Y, Tan J, Li Q, Qu S. Carbon Dots-Inked Paper with Single/Two-Photon Excited Dual-Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403775. [PMID: 38738804 DOI: 10.1002/adma.202403775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Achieving thermochromic afterglow (TCAG) in a single material for advanced information encryption remains a significant challenge. Herein, TCAG in carbon dots (CDs)-inked paper (CDs@Paper) is achieved by tuning the temperature-dependent dual-mode afterglow of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). The CDs are synthesized through thermal treatment of levofloxacin in melting boric acid with postpurification via dialysis. CDs@Paper exhibit both TCAG and excitation-dependent afterglow color properties. The TCAG of CDs@Paper exhibits dynamic color changes from blue at high temperatures to yellow at low temperatures by adjusting the proportion of the temperature-dependent TADF and phosphorescence. Notably, two-photon afterglow in CDs-based afterglow materials and time-dependent two-photon afterglow colors are achieved for the first time. Moreover, leveraging the opposite emission responses of phosphorescence and TADF to temperature, CDs@Paper demonstrate TCAG with temperature-sensing capabilities across a wide temperature range. Furthermore, a CDs@Paper-based 3D code containing color and temperature information is successfully developed for advanced dynamic information encryption.
Collapse
Affiliation(s)
- Yupeng Liu
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR, 999067, China
| | - Dengke Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bingzhe Wang
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR, 999067, China
| | - Junxiang Yang
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999067, China
| | - Yiming Hao
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999067, China
| | - Jing Tan
- School of Mechanical Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, 225009, China
| | - Qijun Li
- School of Mechanical Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, 225009, China
| | - Songnan Qu
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR, 999067, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999067, China
| |
Collapse
|
8
|
Hua Z, Wang L, Gong S, Tian Y, Fu H. Recent strategies for triplet-state emission regulation toward non-lead organic-inorganic metal halides. Chem Commun (Camb) 2024; 60:7246-7265. [PMID: 38916248 DOI: 10.1039/d4cc01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Organic-inorganic metal halides (OIMHs) have strengthened the development of triplet-state emission materials due to their excellent luminescence performance. Due to the inherent toxicity of lead (Pb) significantly limiting its further advancement, numerous studies have been conducted to regulate triplet-state emission of non-Pb OIMHs, and several feasible strategies have been proposed. However, most of the non-Pb OIMHs reported have a relatively short lifetime or a low luminescence efficiency, not in favor of their application. In this review, we provide a summary of recent reports on the regulation of triplet-state emissions in non-Pb OIMHs to provide benefits for the design of innovative luminescent materials. Our focus is primarily on exploring the internal and external factors that influence the triplet-state emission. Starting from the luminescence mechanism, the current strategies for regulating triplet-state emissions are summarized. Moreover, by manipulating these strategies, it becomes feasible to achieve triplet-state emissions that span a range of colors from blue to red, and even extend into the near-infrared spectrum with high luminescence efficiency, while also increasing their lifetimes. This review not only provides fresh insights into the advancement of triplet-state emissions in OIMHs but also integrates experimental and theoretical perspectives to illuminate the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Zhaorui Hua
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Lingyi Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Shuyan Gong
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
9
|
Xing C, Zhou B, Yan D, Fang W. Integrating Full-Color 2D Optical Waveguide and Heterojunction Engineering in Halide Microsheets for Multichannel Photonic Logical Gates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310262. [PMID: 38425136 PMCID: PMC11077683 DOI: 10.1002/advs.202310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Ensuring information security has emerged as a paramount concern in contemporary human society. Substantial advancements in this regard can be achieved by leveraging photonic signals as the primary information carriers, utilizing photonic logical gates capable of wavelength tunability across various time and spatial domains. However, the challenge remains in the rational design of materials possessing space-time-color multiple-resolution capabilities. In this work, a facile approach is proposed for crafting metal-organic halides (MOHs) that offer space-time-color resolution. These MOHs integrate time-resolved room temperature phosphorescence and color-resolved excitation wavelength dependencies with both space-resolved ex situ optical waveguides and in situ heterojunctions. Capitalizing on these multifaceted properties, MOHs-based two-dimensional (2D) optical waveguides and heterojunctions exhibit the ability to tune full-color emissions across the spectra from blue to red, operating within different spatial and temporal scales. Therefore, this work introduces an effective methodology for engineering space-time-color resolved MOH microstructures, holding significant promise for the development of high-density photonic logical devices.
Collapse
Affiliation(s)
- Chang Xing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Bo Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Dongpeng Yan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
10
|
Tang Y, Cai Y, Dou K, Chang J, Li W, Wang S, Sun M, Huang B, Liu X, Qiu J, Zhou L, Wu M, Zhang JC. Dynamic multicolor emissions of multimodal phosphors by Mn 2+ trace doping in self-activated CaGa 4O 7. Nat Commun 2024; 15:3209. [PMID: 38615033 PMCID: PMC11016074 DOI: 10.1038/s41467-024-47431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.
Collapse
Affiliation(s)
- Yiqian Tang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Yiyu Cai
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Kunpeng Dou
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Jianqing Chang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Wei Li
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Shanshan Wang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Xiaofeng Liu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Lei Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Mingmei Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jun-Cheng Zhang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
11
|
Wang S, Liu J, Feng S, Wu J, Yuan Z, Chen B, Ling Q, Lin Z. Anionic Hydrogen-Bonded Frameworks Showing Tautomerism and Colorful Luminescence for the Ultrasensitive Detection of Acetone. Angew Chem Int Ed Engl 2024; 63:e202400742. [PMID: 38319193 DOI: 10.1002/anie.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Tautomers coexisting in an equilibrium system have significant potential for regulating luminescent properties because of their structural differences. However, separating and stabilizing tautomers at room temperature is a considerable challenge. In this study, it is found that hydrogen-bonded organic frameworks (HOFs) composed of Br- anions can effectively separate and stabilize two proton-transfer tautomers of triarylformamidinium bromide: namely, the nitrogen cation (BA-N) and carbon cation (BA-C). The BA-N crystal consisting of a dense anionic HOF and parallelly aligned organic cations exhibits green thermally activated delayed fluorescence and red room-temperature phosphorescence (RTP). The BA-C crystal contains acetone molecules that induce an antiparallel arrangement of the organic cations to form a loose HOF, producing blue prompt fluorescence and green RTP. Interestingly, switching of the HOFs between BA-N and BA-C can be achieved through the uptake and release of acetone, thereby dynamically adjusting multiple luminescent properties. Consequently, the HOF crystals can be used for the highly sensitive and specific sensing of acetone with a detection limit of 66.74 ppm. This study not only stabilizes tautomeric luminescent materials at room temperature, but also provides a new method for constructing smart HOFs with a sensitive response to a stimulus.
Collapse
Affiliation(s)
- Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jun Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shangwei Feng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Junyan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhen Yuan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
12
|
Dai W, Jiang Y, Lei Y, Huang X, Sun P, Shi J, Tong B, Yan D, Cai Z, Dong Y. Recent progress in ion-regulated organic room-temperature phosphorescence. Chem Sci 2024; 15:4222-4237. [PMID: 38516079 PMCID: PMC10952074 DOI: 10.1039/d3sc06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Organic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions. Subsequently, the current challenges and prospects of utilizing ionic interactions for inducing and modulating the phosphorescent properties are presented. It is anticipated that this perspective will provide basic guidelines for fabricating novel ionic RTP materials and further extend their application potential.
Collapse
Affiliation(s)
- Wenbo Dai
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yitian Jiang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology Beijing China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| |
Collapse
|
13
|
Lin Y, Liu S, Yan D. Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0259. [PMID: 37915767 PMCID: PMC10616971 DOI: 10.34133/research.0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Molecular luminescent materials with optical waveguide have wide application prospects in light-emitting diodes, sensors, and logic gates. However, the majority of traditional optical waveguide systems are based on brittle molecular crystals, which limited the fabrication, transportation, storage, and adaptation of flexible devices under diverse application situations. To date, the design and synthesis of photofunctional materials with high flexibility, novel optical waveguide, and multi-port color-tunable emission in the same solid-state system remain an open challenge. Here, we have constructed new types of zero-dimensional organic metal halides (Au-4-dimethylaminopyridine [DMAP] and In-DMAP) with a rarely high elasticity and rather low loss coefficients for optical waveguide. Theoretical calculations on the intermolecular interactions showed that the high elasticity of 2 molecular crystalline materials was original from their herringbone structure and slip plane. Based on one-dimensional flexible microrods of 2 crystals and the 2-dimensional microplate of the Mn-DMAP, heterojunctions with multi-color and space-resolved optical waveguides have been fabricated. The formation mechanism of heterojunctions is based on the surface selective growth on account of the low lattice mismatch ratio between contacting crystal planes. Therefore, this work describes the first attempt to the design of metal-halide-based crystal heterojunctions with high flexibility and optical waveguide, expanding the prospects of traditional luminescent materials for smart optical devices, such as logic gates and multiplexers.
Collapse
Affiliation(s)
| | | | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Wang SD, Xue ZZ, Mu Y, Li JH, Wang GM. Multicolor Phosphorescence Modulated by Excitation and Temperature in Zn-Based Coordination Polymers. Inorg Chem 2023; 62:17464-17469. [PMID: 37820048 DOI: 10.1021/acs.inorgchem.3c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Color-tunable room-temperature phosphorescence (RTP) with potential in many fields is of great importance but extremely challenging. It is necessary to comprehend the correlation between the molecular structure and property to design and synthesize such materials. Metal-organic coordination polymers (CPs) with good predesignability and precise structure have become a platform to construct RTP materials. Herein, three zinc-based CPs containing halogen and a flexible tetradentate ligand are synthesized. All of these CPs present two constant emission regions and an excitation-dependent emission region. Structure-property analysis shows that these emissions originate from isolated chromophores and dimerized chromophores as well as various charge transfers. The phosphorescence colors of these CPs can be modulated by excitation and temperature. This study provides a novel strategy to construct multicolor and multiresponsive RTP materials based on metal-organic coordination polymers.
Collapse
Affiliation(s)
- Shi-Dong Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Ying Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
15
|
Fu PY, Yi SZ, Wang ZH, Zhuang JY, Zhang QS, Mo JT, Wang SC, Zheng H, Pan M, Su CY. One/Two-Photon-Excited ESIPT-Attributed Coordination Polymers with Wide Temperature Range and Color-Tunable Long Persistent Luminescence. Angew Chem Int Ed Engl 2023; 62:e202309172. [PMID: 37488076 DOI: 10.1002/anie.202309172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
The multiple metastable excited states provided by excited-state intramolecular proton transfer (ESIPT) molecules are beneficial to bring temperature-dependent and color-tunable long persistent luminescence (LPL). Meanwhile, ESIPT molecules are intrinsically suitable to be modulated as D-π-A structure to obtain both one/two-photon excitation and LPL emission simultaneously. Herein, we report the rational design of a dynamic CdII coordination polymer (LIFM-106) from ESIPT ligand to achieve the above goals. By comparing LIFM-106 with the counterparts, we established a temperature-regulated competitive relationship between singlet excimer and triplet LPL emission. The optimization of ligand aggregation mode effectively boost the competitiveness of the latter. In result, LIFM-106 shows outstanding one/two-photon excited LPL performance with wide temperature range (100-380 K) and tunable color (green to red). The multichannel radiation process was further elucidated by transient absorption and theoretical calculations, benefiting for the application in anti-counterfeiting systems.
Collapse
Affiliation(s)
- Peng-Yan Fu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shao-Zhe Yi
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhong-Hao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jia-Yi Zhuang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiang-Sheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jun-Ting Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shi-Cheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hao Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Lai J, Zhou B, Wang KZ, Yan D. Layered Double Hydroxide Nanosheets Boosting Red Long Afterglow via Highly Efficient Energy Transfer. J Phys Chem Lett 2023; 14:7165-7172. [PMID: 37540129 DOI: 10.1021/acs.jpclett.3c01442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Room-temperature phosphorescent (RTP) based long-afterglow materials have shown broad application prospects in smart sensors, biological imaging, photodynamic therapy, and many others. However, the fabrication of red long-afterglow materials still faces a great challenge due to the competitive relationship between RTP efficiency and lifetime. In this work, we reported a series of layered double hydroxide (LDHs) nanosheets with red long-afterglow (quantum yield up to 42.35% and lifetime up to 256.77 ms) by taking advantage of the highly efficient triplet-triplet energy transfer from green phosphorescent LDHs to the red fluorescent dye rhodamine B (RhB, as a guest molecule). Specifically, the Zn-based LDHs@RhB composite (Zn-Al-LDH-4-CBBA@RhB) presents energy transfer efficiency as high as 95.18%, and the red long-afterglow could even be excited upon white-light irradiation. Benefiting from the time-resolved afterglow, the LDHs@RhB composites exhibit great potential in the fields of anticounterfeiting and information encryption.
Collapse
Affiliation(s)
- Jingyi Lai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
17
|
Xiao G, Ma YJ, Fang X, Xu C, Yan D. CO 2-responsive tunable persistent luminescence in a hydrogen-bond organized two-component ionic crystal. Chem Commun (Camb) 2023; 59:10113-10116. [PMID: 37530123 DOI: 10.1039/d3cc03265e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A reversible CO2-responsive luminescent material was constructed by a facile hydrogen-bond self-assembly of a two-component ionic crystal. The modification of CO2 on the ionic crystal not only alternates the green afterglow, but also endows the material with inverse excitation wavelength dependence for multicolor emission.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Changhai Xu
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
18
|
Nie F, Wang KZ, Yan D. Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal-organic complexes. Nat Commun 2023; 14:1654. [PMID: 36964159 PMCID: PMC10039082 DOI: 10.1038/s41467-023-37331-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
The fabrication of chiral molecules into macroscopic systems has many valuable applications, especially in the fields of optical displays, data encryption, information storage, and so on. Here, we design and prepare a serious of supramolecular glasses (SGs) based on Zn-L-Histidine complexes, via an evaporation-induced self-assembly (EISA) strategy. Metal-ligand interactions between the zinc(II) ion and chiral L-Histidine endow the SGs with interesting circularly polarized afterglow (CPA). Multicolored CPA emissions from blue to red with dissymmetry factor as high as 9.5 × 10-3 and excited-state lifetime up to 356.7 ms are achieved under ambient conditions. Therefore, this work not only communicates the bulk SGs with wide-tunable afterglow and large circular polarization, but also provides an EISA method for the macroscopic self-assembly of chiral metal-organic hybrids toward photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
19
|
A universal strategy for achieving dual cross-linked networks to obtain ultralong polymeric room temperature phosphorescence. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
20
|
Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zhang Z, Jin X, Sun X, Su J, Qu DH. Vibration-induced emission: Dynamic multiple intrinsic luminescence. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Xue ZY, Yu JL, Xia QQ, Zhu YQ, Wu MX, Liu X, Wang XH. Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53359-53369. [PMID: 36383092 DOI: 10.1021/acsami.2c17600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of color-tunable luminescent polymeric materials with enhanced emission intensity and room-temperature phosphorescence (RTP) performance regulated by a single chromophore component is highly desirable in the scope of photoluminescent materials. Herein, a set of binary copolymers were facilely synthesized using free radical polymerization by selecting different types of polymer matrix and N-substituted naphthalimides (NPA) as chromophores. Surprisingly, the fluorescence emission of copolymers could be remarkably enhanced, because of the intramolecular aggregation of NPA manipulated by a single polymer chain in both solution and solid state. Moreover, RTP signals of binary copolymers were all clearly observed in the air without any processing procedure, because of the embedding of phosphors into hydrogen bonding networks after copolymerization with vinyl-based acrylamide monomers. Taking advantages of the synergistic effect of copolymerization-induced aggregation and copolymerization-induced rigidification to promote optical performance, UV stimulus-responsive luminescent polymer films with processability, flexibility, and adjustable emission wavelength were simply prepared using a drop-casting method in large scale, the setting of which is the basis for application in the fields of organic optoelectronics, information security, and bioimaging/sensing.
Collapse
Affiliation(s)
- Zhi-Yuan Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jia-Lin Yu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Qing-Qing Xia
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yu-Qi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xing-Huo Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
23
|
Ma YJ, Qi Z, Xiao G, Fang X, Yan D. Metal-Halide Coordination Polymers with Excitation Wavelength- and Time-Dependent Ultralong Room-Temperature Phosphorescence. Inorg Chem 2022; 61:16477-16483. [PMID: 36190957 DOI: 10.1021/acs.inorgchem.2c02750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic hybrids with ultralong room-temperature phosphorescence (RTP) have potential applications in many fields, including optical communications, anticounterfeiting, encryption, bioimaging, and so on. Herein, we report two isostructural one-dimensional zinc-organic halides as coordination polymers ZnX2(bpp) (X = Cl, 1; Br, 2; bpp = 1,3-di(4-pyridyl)propane) with excitation wavelength- and time-dependent ultralong RTP properties. The dynamic multicolor afterglow can be assigned to the emission of the pristine ligand bpp and its interactions with halogen atoms. Experiments and theoretical calculations both suggest that ZnX2 is crucial for ultralong RTP: (a) the metal coordination and X...π bonds in coordination polymers fix the bpp molecules and suppress the nonradiative transitions; (b) the spin-orbital coupling of coordination polymers is largely enhanced relative to the bpp because of the heavy atom effect; and (c) the charge transfer exists between halogens and bpp ligand. Therefore, this work not only presents metal-halide coordination polymers with excitation wavelength- and time-dependent RTP properties, but also provides a facile method for the new types of dynamic multicolor afterglow materials.
Collapse
Affiliation(s)
- Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Liu L, Peng S, Guo Y, Lin Y, Sun X, Song L, Shi J, Zhang Y. Designing X-ray-Excited UVC Persistent Luminescent Material via Band Gap Engineering and Its Application to Anti-Counterfeiting and Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41215-41224. [PMID: 36064349 DOI: 10.1021/acsami.2c12407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Persistent luminescent materials (PLMs) are promising candidates for the anti-counterfeiting and information encryption field. However, ultraviolet (UV) excitation and visible emission are partially responsible for enabling information that has been encrypted to combat counterfeiting to be accessed by trial and error, resulting in imitation and information leakage. Here, we propose the possibility of controlling the persistent luminescent (PersL) emission spectra and its excitation light source with the use of band gap engineering, while obtaining X-ray exciting, not UV exciting UV PLM for advanced anti-counterfeiting and encryption application. Cationic substitution was used to adjust the width of the band gap of Lu(X)O4 (X = V, Nb, Ta, and P) from ∼4 to 9 eV. In addition, Bi3+ was introduced into the host as an emitter, which enabled the PersL emission spectra to be modulated from ∼550 to 230 nm. Among these PLMs, LuPO4:Bi3+ has unique optical properties. Under UV excitation, LuPO4:Bi3+ exhibits weak, inconspicuous visible down-conversion luminescence (DCL), without PersL ceasing once excitation is discontinued. Interestingly, LuPO4:Bi3+ displays UV PersL after X-ray excitation, and human eyes are insensitive to UV PersL, which requires specialized optical equipment to detect. A proof-of-concept assessment of LuPO4:Bi3+ for anti-counterfeiting and information encryption applications demonstrated its suitability in this regard.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuxuan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Zhang L, Luo Z, Wang W, Liu Y, He X, Quan Z. Organic Cation-Directed Modulation of Emissions in Zero-Dimensional Hybrid Tin Bromides. Inorg Chem 2022; 61:14857-14863. [PMID: 36067388 DOI: 10.1021/acs.inorgchem.2c02438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zero-dimensional hybrid metal halides (0D HMHs) are attractive due to their intriguing self-trapped exciton (STE) emission properties. However, the effect of organic cations on the emission of 0D HMHs is relatively underexplored. Herein, we report two types of 0D hybrid tin bromides, (BMe)2SnBr6 (BMe = C8N2H18) and (MeH)2SnBr6 (MeH = C7N2H16), which share similar structural features with different hydrogen bonding (HB) interactions between [SnBr6]4- anions and organic cations. The (BMe)2SnBr6 with weak HB interactions exhibits only STE emission, while the (MeH)2SnBr6 exhibits both STE and charge transfer exciton emissions owing to the strong HB interactions, resulting in an excitation-dependent emission at cryogenic conditions. Detailed structural analyses and Hirshfeld surface calculations confirm that the enhanced HB interactions are essential to obtain the multiple emissions in (MeH)2SnBr6.
Collapse
Affiliation(s)
- Liming Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang 150001, China.,Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
26
|
Guo Y, Chen K, Hu Z, Lei Y, Liu X, Liu M, Cai Z, Xiao J, Wu H, Huang X. Metal Ions as the Third Component Coordinate with the Guest to Stereoscopically Enhance the Phosphorescence Properties of Doped Materials. J Phys Chem Lett 2022; 13:7607-7617. [PMID: 35950964 DOI: 10.1021/acs.jpclett.2c02057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The construction of multicomponent doped systems is an important direction for the development of phosphorescence materials. Herein, benzophenone is selected as the host, phenylquinoline isomers are designed as guests, and seven metal ions are selected as the third component (Al3+, Cu+/2+, Zn2+, Ga3+, Ag+, Cd2+, and In3+) to construct the three-component doped system. Ag+ and Cd2+ can considerably increase the emission intensity up to 38 times, and the highest phosphorescence quantum efficiency reaches 70%. Al3+, Ga3+, and In3+ can prolong the emission wavelength, and the phosphorescence wavelength can be red-shifted up to 60 nm. Cu2+, Ga3+, and In3+ can extend the phosphorescence lifetime by a maximum of 3.6 times. A series of experiments demonstrated that the coordination of metals and guests is the key to improve the phosphorescence properties. This work presents a simple and effective strategy to enhance the phosphorescence properties of doped materials.
Collapse
Affiliation(s)
- Yan Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Kaijun Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Zechen Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Xiaoqing Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Zhengxu Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, P.R. China
| | - Jiawen Xiao
- Institute of Microstructureand Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P.R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| |
Collapse
|
27
|
Cao FY, Liu HH, Mu Y, Xue ZZ, Li JH, Wang GM. Enabling Dual Phosphorescence by Locating a Flexible Ligand in Zn-Based Hybrid Frameworks. J Phys Chem Lett 2022; 13:6975-6980. [PMID: 35881076 DOI: 10.1021/acs.jpclett.2c01821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Room-temperature phosphorescence (RTP) materials with recognizable afterglow property have gained widespread attraction. Multicolor RTP has added benefits in multiplexed biological labeling, a zero background ratiometric sensor, a multicolor display, and other fields. However, it is a great challenge to prepare multicolor RTP from a single-component compound according to Kasha's rule. Herein, we propose a strategy to design multicolor RTP in a metal-organic hybrid framework through constructing chromophores in both isolated state and dimer state using a flexible tetradentate ligand. Two compounds were synthesized that presented blue and green dual phosphorescence with different lifetimes at ambient conditions. The photoluminescence mechanism has been thoroughly studied by structure-property analysis. This study provides various possibilities to prepare high-performing RTP materials by the rational design and synthesis of similar compounds.
Collapse
Affiliation(s)
- Fang-Yuan Cao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hao-Hao Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Ying Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
28
|
Xiao G, Ma YJ, Fang X, Yan D. Quadruple Anticounterfeiting Encryption: Anion-Modulated Forward and Reverse Excitation-Dependent Multicolor Afterglow in Two-Component Ionic Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30246-30255. [PMID: 35731845 DOI: 10.1021/acsami.2c08379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecule-based afterglow materials with ultralong-lived excited states have attracted great attention owing to their unique applications in light-emitting devices, information storage, and anticounterfeiting. Herein, a series of new types of two-component ionic crystalline materials were fabricated by the self-assembly of cytosine and different anions under ambient conditions. The multiple intermolecular interactions of cytosine with phosphate and halogens anions can lead to abundant energy levels and different crystal stacking modes to control molecular aggregation and excited-state intermolecular proton transfer (ESIPT) process. Interestingly, H-aggregation-induced green to yellow room-temperature phosphorescence (RTP) and ESIPT-dominated cyan RTP to deep blue thermally activated delayed fluorescence (TADF) emission can be generated by tuning excitation wavelength, time evolution, and temperature. Furthermore, the combination of two-component ionic crystals can be used as multicolored candidates for quadruple information encryption. Therefore, this work not only develops an anion-modulated strategy to achieve color-tunable afterglow from both static and dynamic fashions but also provides a guideline for designing forward/reverse excitation-dependent luminescent materials.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Elattar A, Tsutsumi K, Suzuki H, Nishikawa T, Kyaw AKK, Hayashi Y. Mixed-halide copper-based perovskite R 2Cu(Cl/Br) 4 with different organic cations for reversible thermochromism. NEW J CHEM 2022. [DOI: 10.1039/d2nj04693h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanically exfoliated flakes of mixed-halide Cu-based perovskite crystals, R2Cu(Cl/Br)4, with three alkyl chains exhibit reversible thermochromic behavior with differences in crystal lattice behavior depending on the organic spacer used.
Collapse
Affiliation(s)
- Amr Elattar
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Kosei Tsutsumi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroo Suzuki
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Takeshi Nishikawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Aung Ko Ko Kyaw
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
30
|
Zhang P, Xie W, Wang Z, Lin Z, Huang X, Ju Z, Liu W. Time-dependent dynamic multicolor afterglow of simple LiGa 5O 8:Eu 3+/Tb 3+ particles for advanced anticounterfeiting and encryption. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of LiGa5O8:Eu3+/Tb3+ phosphors exhibit time-dependent dynamic multicolor afterglow from blue to red or green over several seconds after ceasing the excitation.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, P. R. China
| | - Wanying Xie
- College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, P. R. China
| | - Zhenbin Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, P. R. China
| | - Zenggang Lin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiuxiang Huang
- College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, P. R. China
| | - Zhenghua Ju
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|