1
|
Natarajan B, Kannan P, Maduraiveeran G, Alnaser AS. Polymer nanocomposite-based biomolecular sensor for healthcare monitoring. Adv Colloid Interface Sci 2025; 343:103557. [PMID: 40393187 DOI: 10.1016/j.cis.2025.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Polymer-derived nanocomposites have gained significant attention in biosensing due to their ability to integrate the mechanical flexibility of polymers with the high electrical conductivity, large surface area and porosity, enhanced catalytic activity, and excellent biocompatibility of nanoscale materials. When combined with biomolecules, these nanocomposites form advanced polymer-bio interfaces that enhance electrochemical signal transduction, molecular recognition, and surface stability critical factors for achieving high sensitivity and selectivity in diagnostic applications. This review provides a comprehensive overview of recent progress in the development and application of polymer-derived nanocomposites, such as conducting polymers, carbon nanotubes (CNTs), graphene, dendrimers, and molecularly imprinted polymers (MIPs), in the field of electrochemical biosensing. We delve into the fundamental interfacial mechanisms, including adsorption phenomena, electron transfer behavior, and catalytic activity that govern biosensor performance. The review also discusses the synthesis and functionalization of nanocomposites, sensor fabrication strategies, and mechanistic insights into their sensing/biosensing capabilities across various clinical and biomedical targets. Lastly, we evaluate key performance metrics ("figures of merit" refer to key sensing parameters such as materials, analytes, sensitivity, linear range, limit of detection (LOD), and real samples testing), address current challenges in optimizing polymer-bio interfaces, and highlight emerging opportunities for advancing next-generation diagnostic technologies.
Collapse
Affiliation(s)
- Bharathi Natarajan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu, Tamil Nadu, India; Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Materials Research Center, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Ali S Alnaser
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Materials Research Center, American University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Zhou P, Mo F, Ji Z, Yang J, Du H, Wang Z, Haick H, Wang Y. Highly tough and responsible ionic liquid/polyvinyl alcohol-based hydrogels for stretchable electronics. Sci Bull (Beijing) 2025; 70:1410-1415. [PMID: 39922777 DOI: 10.1016/j.scib.2025.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Affiliation(s)
- Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zichong Ji
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hongzhong Du
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zonglei Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel; Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
3
|
Qiu H, Li A, Wang Z, Shangguan Q, Sun Y, Tang Y, Wan P, Jiang H, Chen Y. Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid. J Colloid Interface Sci 2025; 684:449-456. [PMID: 39799627 DOI: 10.1016/j.jcis.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH4 to CH3OH and CH3CH2OH at room temperature, in which V3O7·H2O as the anodic catalyst to activate CH4 and an aprotic ionic liquid [BMIM]BF4 as supporting electrolyte to control superoxide radicals (O2-) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.2 % and selectivity of 76.8 % can be reached. Molecular dynamics (MD) simulation indicates that interaction between CH4 molecules and [BMIM]BF4, which enhances the mass transfer in electrochemical reaction. Density function theory (DFT) calculation results suggest that the V sites in V3O7·H2O enhanced the chemisorption and dissociation of CH4 molecules on anode surface, then superoxide radicals (O2-) are supposed to be involved in the formation of methanol and ethanol.
Collapse
Affiliation(s)
- Huiying Qiu
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Ang Li
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Zhaohui Wang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Qilan Shangguan
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Yanzhi Sun
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Yang Tang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Pingyu Wan
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Haomin Jiang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China; Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087 PR China.
| | - Yongmei Chen
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China.
| |
Collapse
|
4
|
Farooq U, Bertana V, Mossotti G, Ferrero S, Scaltrito L. Sustainable Manufacturing of Lightweight Hybrid Nanocomposites for Electric Vehicle Battery Enclosures. Polymers (Basel) 2025; 17:1056. [PMID: 40284321 PMCID: PMC12030669 DOI: 10.3390/polym17081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Nanocomposite laminates containing carbon fibers, epoxy, and multiwalled carbon nanotubes were fabricated using a vacuum bag process. Ecofriendly ionic liquid (5 wt%)-treated multiwalled carbon nanotubes (pristine and nickel-coated) were added to the epoxy independently, in amounts ranging from 1 wt% to 3 wt%, in order to tailor the mechanical, electrical, and thermal performance of manufactured carbon fiber epoxy composite laminates. These nanocomposite laminates were later characterized through flexural testing, dynamic mechanical analysis, impedance spectroscopy, thermal conductivity tests, and FTIR spectroscopy to evaluate their suitability for battery pack applications. The findings showed that both types of multiwalled carbon nanotubes exhibited multifaceted effects on the properties of bulk hybrid carbon fiber epoxy nanocomposite laminates. For instance, the flexural strength of the composites containing 3.0 wt% of ionic liquid-treated pristine multiwalled carbon nanotubes reached 802.8 MPa, the flexural modulus was 88.21 GPa, and the storage modulus was 18.2 GPa, while the loss modulus peaked at 1.76 GPa. The thermal conductivity of the composites ranged from 0.38869 W/(m · K) to 0.69772 W/(m · K), and the electrical resistance decreased significantly with the addition of MWCNTs, reaching a minimum of 29.89 Ω for CFRPIP-1.5 wt%. The structural performance of hybrid nanocomposites containing ionic liquid-treated pristine multiwalled carbon nanotubes was higher than that of the hybrid nanocomposite of ionic liquid-treated Ni-coated multiwalled carbon nanotubes, although the latter was found to possess better functional performance.
Collapse
Affiliation(s)
- Umar Farooq
- Chilab-ITEM Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (V.B.); (G.M.); (S.F.); (L.S.)
- Department of Science and Technology Innovation (DISIT), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Valentina Bertana
- Chilab-ITEM Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (V.B.); (G.M.); (S.F.); (L.S.)
| | - Giulia Mossotti
- Chilab-ITEM Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (V.B.); (G.M.); (S.F.); (L.S.)
| | - Sergio Ferrero
- Chilab-ITEM Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (V.B.); (G.M.); (S.F.); (L.S.)
| | - Luciano Scaltrito
- Chilab-ITEM Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (V.B.); (G.M.); (S.F.); (L.S.)
| |
Collapse
|
5
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
6
|
Ahmad R, Bhat KS, Nagal V, Nakate UT, Ahmad A, Alshammari MB, Alam S, Lee BI. Surface-engineered vertically-aligned ZnO nanorod for sensitive non-enzymatic electrochemical monitoring of cholesterol. Heliyon 2024; 10:e37847. [PMID: 39315144 PMCID: PMC11417317 DOI: 10.1016/j.heliyon.2024.e37847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Developing highly sensitive and selective non-enzymatic electrochemical biosensors for disease biomarker detection has become challenging in healthcare applications. However, advances in material science are opening new avenues for creating more dependable biosensing technologies. In this context, the present work introduces a novel approach by engineering a hybrid structure of zinc oxide nanorod (ZnO NR) modified with iron oxide nanoparticle (Fe2O3 NP) on an FTO electrode. This Fe2O3 NP-ZnO NR hybrid material functions as a nanozyme, facilitating the catalysis of cholesterol and enabling the direct transfer of electrons to the fluorine-doped tin oxide (FTO) electrode, limiting the need for costly and traditional enzymes in the detection process. This innovative non-enzymatic cholesterol biosensor showcases remarkable sensitivity, registering at 642.8 μA/mMcm2 within a linear response range of up to 9.0 mM. It also exhibits a low detection limit (LOD) of ∼12.4 μM, ensuring its capability to detect minimal concentrations of cholesterol accurately. Moreover, the developed biosensor displays exceptional selectivity by effectively distinguishing cholesterol molecules from other interfering biological species, while exhibiting outstanding stability and reproducibility. Our findings indicate that the Fe2O3 NP-ZnO NR hybrid nanostructure on the FTO electrode holds promise for enhancing biosensor stability. Furthermore, the present device fabrication platform offers versatility, as it can be adapted with various enzymes or modified with different metal oxides, potentially broadening its applicability in a wide range of biomarkers detection.
Collapse
Affiliation(s)
- Rafiq Ahmad
- ‘New-Senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way, 138602, Singapore
| | - Vandana Nagal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Umesh T. Nakate
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, United States
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
7
|
Li H, Xu F, Li Y, Sun J. Self-Healing Ionogel-Enabled Self-Healing and Wide-Temperature Flexible Zinc-Air Batteries with Ultra-Long Cycling Lives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402193. [PMID: 38569521 PMCID: PMC11220675 DOI: 10.1002/advs.202402193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Hydrogel-based zinc-air batteries (ZABs) are promising flexible rechargeable batteries. However, the practical application of hydrogel-based ZABs is limited by their short service life, narrow operating temperature range, and repair difficulty. Herein, a self-healing ionogel is synthesized by the photopolymerization of acrylamide and poly(ethylene glycol) monomethyl ether acrylate in 1-ethyl-3-methylimidazolium dicyanamide with zinc acetate dihydrate and first used as an electrolyte to fabricate self-healing ZABs. The obtained self-healing ionogel has a wide operating temperature range, good environmental and electrochemical stability, high ionic conductivity, satisfactory mechanical strength, repeatable and efficient self-healing properties enabled by the reversibility of hydrogen bonding, and the ability to inhibit the production of dendrites and by-products. Notably, the self-healing ionogel has the highest ionic conductivity and toughness compared to other reported self-healing ionogels. The prepared self-healing ionogel is used to assemble self-healing flexible ZABs with a wide operating temperature range. These ZABs have ultra-long cycling lives and excellent stability under harsh conditions. After being damaged, the ZABs can repeatedly self-heal to recover their battery performance, providing a long-lasting and reliable power supply for wearable devices. This work opens new opportunities for the development of electrolytes for ZABs.
Collapse
Affiliation(s)
- Hongli Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Fuchang Xu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
8
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
9
|
Wang ZD, Bo K, Zhong CL, Xin YH, Lu GL, Sun H, Liang S, Liu ZN, Zang HY. Multifunctional Polyoxometalates-Based Ionohydrogels toward Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400099. [PMID: 38481340 DOI: 10.1002/adma.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Multifunctional flexible electronics present tremendous opportunities in the rapidly evolving digital age. One potential avenue to realize this goal is the integration of polyoxometalates (POMs) and ionic liquid-based gels (ILGs), but the challenge of macrophase separation due to poor compatibility, especially caused by repulsion between like-charged units, poses a significant hurdle. Herein, the possibilities of producing diverse and homogenous POMs-containing ionohydrogels by nanoconfining POMs and ionic liquids (ILs) within an elastomer-like polyzwitterionic hydrogel using a simple one-step random copolymerization method, are expanded vastly. The incorporation of polyzwitterions provides a nanoconfined microenvironment and effectively modulates excessive electrostatic interactions in POMs/ILs/H2O blending system, facilitating a phase transition from macrophase separation to a submillimeter scale worm-like microphase-separation system. Moreover, combining POMs-reinforced ionohydrogels with a developed integrated self-powered sensing system utilizing strain sensors and Zn-ion hybrid supercapacitors has enabled efficient energy storage and detection of external strain changes with high precision. This work not only provides guidelines for manipulating morphology within phase-separation gelation systems, but also paves the way for developing versatile POMs-based ionohydrogels for state-of-the-art smart flexible electronics.
Collapse
Affiliation(s)
- Zhi-Da Wang
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Kai Bo
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Chen-Long Zhong
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Yu-Hang Xin
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Guo-Long Lu
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Hang Sun
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Song Liang
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Zhen-Ning Liu
- Key Laboratory of Bionic Engineering of the Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
10
|
Huang J, Wang J, Duan H, Dong L, Chen S, Zhang J, Zhang X. Zr modulated N doping composites for CO 2 conversion into carbonates. iScience 2024; 27:109714. [PMID: 38706851 PMCID: PMC11067376 DOI: 10.1016/j.isci.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 04/07/2024] [Indexed: 05/07/2024] Open
Abstract
Acidic and basic sites of catalysts are essential for CO2 capture and activation. In this work, Zr, N-ZnO/ZnAl-LDH-IL composites in ionic liquid and methanol systems were fabricated, and applied to catalyze the synthesis of ethylene carbonate (EC) from ethylene glycol (EG) and CO2 with about 4.76 mmolEC gCat.-1 h-1. The composites showed more strong basic sites due to the effective induction of reactive groups on the catalyst surface by Zr doping, resulting in an increase of pyridinic-N groups from 5.48% to 22.25%. More C atoms adjacent to pyridinic-N as strong basic sites was conducive to the activation of CO2 and EG. In addition, the possible catalytic pathway and mechanism of the composites for synthesizing EC as well as the doping of La, Fe, Ce, and Cu were also investigated, which provides an effective strategy for regulating the acid-base centers on the catalyst surface through ionic liquids and methanol solvents.
Collapse
Affiliation(s)
- Jielin Huang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Duan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Dong
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516003, China
| | - Songsong Chen
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516003, China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516003, China
| |
Collapse
|
11
|
Rahman MM, Jahan MS, Islam MM, Susan MABH. Dissolution of cellulose in imidazolium-based double salt ionic liquids. Int J Biol Macromol 2024; 267:131331. [PMID: 38574918 DOI: 10.1016/j.ijbiomac.2024.131331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The dissolution of cellulose in double salt ionic liquids (DSILs) was studied in detail and compared with the dissolution in individual constituent ionic liquids (ILs). The DSILs, [C4mim](CH3CO2)xCl1-x (x is the mole fraction of the single component ILs), were synthesized using acetate and chloride salts of 1-butyl-3-methylimidazolium. These DSILs were then used for the investigation of the solubility of cellulose in the whole mole fraction range. Commercial cellulose (CC) powder, kraft pulp (KP), and prehydrolysis kraft pulp (PHKP) of jute were chosen as cellulose sources. The solubility of cellulose increased with an increasing temperature for [C4mim](CH3CO2)0.6Cl0.4 and with increasing amount of [C4mim]Cl in DSILs. The maximum solubility of CC powder was 32.8 wt% in [C4mim](CH3CO2)0.6Cl0.4 at 100 °C, while for KP and PHKP, solubilities were 30.1 and 30.5 wt%, respectively under the identical condition. Cellulose could be regenerated from the DSILs using water as an antisolvent. Structure, morphology, and thermal stability of the regenerated cellulosic materials were analyzed. DSILs could be recycled >99 % without a discernible change in structure. This work demonstrates that DSILs display enhanced solubility over ILs system and have potential as a chemical processing methodology.
Collapse
Affiliation(s)
- M Mahbubur Rahman
- Bangladesh Council of Scientific and Industrial Research, Dr. Qudrat-i-Khuda Road, Dhaka 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Sarwar Jahan
- Bangladesh Council of Scientific and Industrial Research, Dr. Qudrat-i-Khuda Road, Dhaka 1205, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Abu Bin Hasan Susan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh; Dhaka University Nanotechnology Center (DUNC), University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
12
|
Song Y, Nguyen TH, Lee D, Kim J. Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9551-9560. [PMID: 38331574 DOI: 10.1021/acsami.3c18588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Stretchable sensors have been widely investigated and developed for the purpose of human motion detection, touch sensors, and healthcare monitoring, typically converting mechanical/structural deformation into electrical signals. The viscoelastic strain of stretchable materials often results in nonlinear stress-strain characteristics over a broad range of strains, consequently making the stretchable sensors at the body joints less accurate in predicting and recognizing human gestures. Accurate recognition of human gestures can be further deteriorated by environmental changes such as temperature and humidity. Here, we demonstrated an environment-adaptable high stress-strain linearity (up to ε = 150%) and high-durability (>100,000 cycles) stretchable sensor conformally laminated onto the body joints for human gesture recognition. The serpentine configuration of our ionic liquid-based stretchable film enabled us to construct broad data sets of mechanical strain and temperature changes for machine learning-based gesture recognition. Signal recognition and training of distinct strains and environmental stimuli using a machine learning-based algorithm analysis successfully measured and predicted the joint motion in a temperature-changing environment with an accuracy of 92.86% (R-squared). Therefore, we believe that our serpentine-shaped ion gel-based stretchable sensor harmonized with machine-learning analysis will be a significant achievement toward environmentally adaptive and multianalyte sensing applications. Our proposed machine learning-enabled multisensor system may enable the development of future electronic devices such as wearable electronics, soft robotics, electronic skin, and human-machine interaction systems.
Collapse
Affiliation(s)
- Yongjun Song
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Thi Huyen Nguyen
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Dawoon Lee
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Jaekyun Kim
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Republic of Korea
- BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
13
|
Kaur H, Siwal SS, Saini RV, Thakur VK. Covalent-Organic Framework-Based Materials in Theranostic Applications: Insights into Their Advantages and Challenges. ACS OMEGA 2024; 9:6235-6252. [PMID: 38371794 PMCID: PMC10870270 DOI: 10.1021/acsomega.3c08456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Nanomedicine has been essential in bioimaging and cancer therapy in recent years. Nanoscale covalent-organic frameworks (COFs) have been growing as an adequate classification of biomedical nanomaterials with practical application prospects because of their increased porosity, functionality, and biocompatibility. The high sponginess of COFs enables the incorporation of distinct imaging and therapeutic mechanisms with a better loading efficiency. Nevertheless, preliminary biocompatibility limits their possibility for clinical translation. Thus, cutting-edge nanomaterials with high biocompatibility and improved therapeutic efficiency are highly expected to fast-track the clinical translation of nanomedicines. The inherent effects of nanoscale COFs, such as proper size, modular pore geometry and porosity, and specific postsynthetic transformation through simple organic changes, make them particularly appealing for prospective nanomedicines. The organic building blocks of COFs may also be postmodified for particular binding to biomarkers. The exceptional features of COFs cause them to be an encouraging nanocarrier for bioimaging and therapeutic applications. In this review, we have systematically discussed the advances of COFs in the field of theranostics by providing essential features of COFs along with their synthetic methods. Further, the applications of COFs in the field of theranostics (such as drug delivery systems, photothermal, and photodynamic therapy) are discussed in detail with the help of available literature to date. Furthermore, the advantages of COFs over other materials for therapeutics and drug delivery are discussed. Finally, the review concludes with potential future COF applications in the theranostic field.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
| | - Reena V. Saini
- Department
of Biotechnology, MMEC, Maharishi Markandeshwar
(Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
| |
Collapse
|
14
|
Namasivayam SKR, Pandian UK, Samrat K, Arvind Bharani RS, John A, Kavisri M, Kadaikunnan S, Thiruvengadam M, Moovendhan M. Fungal derived herbicidal metabolite loaded starch-chitosan-gum acacia-agar based bio composite: Preparation, characterization, herbicidal activity, release profile and biocompatibility. Int J Biol Macromol 2024; 259:129264. [PMID: 38199548 DOI: 10.1016/j.ijbiomac.2024.129264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Biocomposites based on starch- gum acacia- agar, chitosan- starch- agar, starch- poly vinyl alcohol- agar were synthesized by simple, green route principles and the various characterization techniques like fourier infrared spectroscopy, SEM revealed the highly stable micro dimenstional that specially interacted with functional groups of polymers -herbicidal metabolites. Respective biocomposite was prepared by mixing equal volume of the selected polymer (1;1;1 ratio) with known concentration (100 mg of in distilled water followed by the addition of reconstituted herbicidal metabolites (100 mg or 0.1 g). Though all the biocomposites were capable of inducing herbicidal effect, notable impact was recorded in chitosan- starch- gum acacia treatment. In this case, the necrotic lesions were initiated at the early incubation period (6 h), progressively developing into dark brownish black lesions with 30.0 mm diameter. Release profile of the metabolites from the respective composite was also under in vitro and soil assay. Release profile study under in vitro and soil condition showed the sustained or controlled manner in distilled water and ethyl acetate treatment. No sign of toxic effect on the soil, parameters plant growth, rhizobacteria and peripheral blood cells clearly revealed the best biocompatibility of the presently proposed biocomposite.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - U Karthika Pandian
- Centre for Bioresource Research and Development, Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600112, Tamil Nadu, India
| | - K Samrat
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore 560054, Karnataka, India
| | - R S Arvind Bharani
- Institute of Obstetrics and Gynaecology, Madras Medical College, Egmore, Chennai-600008, Tamil Nadu, India
| | - Arun John
- Department of Molecular Analytics, Saveetha school of engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - M Kavisri
- Department of Infrastructure Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602195, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Meivelu Moovendhan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India..
| |
Collapse
|
15
|
Liu J, Zhang X, Cui Y, Liu Y, Wang W, Guo Y, Wang Q, Dong X. Ionic Liquid/Water Binary Solvent Anti-Freezing Hydrogel for Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5208-5216. [PMID: 38236660 DOI: 10.1021/acsami.3c19136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Hydrogels are widely applied in the flexible wearable electronic devices field owing to their skin-like stretchability, superb biocompatibility, and high conductivity retention under mechanical deformations. Nevertheless, hydrogels are prone to freezing at low temperatures and losing water at high temperatures, which seriously limits their practical applications. Herein, a binary solvent system of ionic liquid (1-ethyl-3-methylimidazolium chloride) and water was prepared to endow the ionic hydrogel high ionic conductivity (0.28 S m-1 at 25 °C), high transparency (94.26%), and superior freezing tolerance (-50 °C). The multiple hydrogen bonds formed among polymer chains, water, and ionic liquids significantly improved the mechanical properties of the ionic hydrogel, enabling excellent tensile properties (strain >1800%) and durability (1000 times at 100% strain). Moreover, the ionic hydrogel was further assembled into a dual-response sensor, which exhibited satisfactory sensitivity to both tension (gauge factor = 2.15 at 200% strain) and temperature (temperature coefficient of resistance = -1.845%/°C) and can be applied for human motion and body temperature monitoring. This study provides a versatile method for preparing multifunctional hydrogels with a wide range of applications and lays the groundwork for human movement detection and smart health care.
Collapse
Affiliation(s)
- Jingying Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ying Cui
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Yunlong Liu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
16
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
17
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
18
|
Cedeño Mata M, Orpella A, Dominguez-Pumar M, Bermejo S. Boosting the Sensitivity and Hysteresis of a Gel Polymer Electrolyte by Embedding SiO 2 Nanoparticles and PVP for Humidity Applications. Gels 2024; 10:50. [PMID: 38247773 PMCID: PMC10815479 DOI: 10.3390/gels10010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Enhancing sensitivity and hysteresis in capacitance humidity sensors is vital for precise, reliable, and consistent humidity control. This study explores this concern by incorporating polyvinylpyrrolidone (PVP) and SiO2 nanoparticles into a polyvinyl alcohol (PVA)-based ionic liquid gel polymer electrolyte (ILGPE), studying two capacitor types: ILGPE and SiO2 composite ILGPE (CILGPE) capacitors. These novel electrolytes use ammonium acetate as a plasticiser, 1-butyl-3-methylimidazolium bromide as an ionic liquid, SiO2 nanoparticles as a composite, and PVA and PVP as host polymers. Capacitors were characterised and modelled using impedance spectroscopy (IS), providing an electrophysical insight into their working principle. Sensitivity and hysteresis were evaluated within a 20-90% relative humidity (RH) range at 25 °C. The SiO2 CILGPE capacitor with PVP presented superior sensitivity and hysteresis, revealing the beneficial combination of SiO2 nanoparticles and PVP. These benefits are due to the creation of pathways that facilitate water molecule diffusion and crystallinity reduction in PVA-ILGPE. In particular, at 10 kHz, it demonstrates a calibrated capacitance sensitivity of 2660 pF/%RH and a hysteresis of 3.28 %RH. This optimised capacitor outperforms some previous humidity capacitive sensors in sensitivity while exhibiting low hysteresis.
Collapse
Affiliation(s)
- Michelle Cedeño Mata
- MNT Group, Electronic Engineering Department, Polytechnic University of Catalonia (UPC), C/Jordi Girona 1-3, 08034 Barcelona, Spain
| | | | | | - Sandra Bermejo
- MNT Group, Electronic Engineering Department, Polytechnic University of Catalonia (UPC), C/Jordi Girona 1-3, 08034 Barcelona, Spain
| |
Collapse
|
19
|
Emon OF, Sun H, Rahim A, Choi JW. An Ionic Liquid-Based Stretchable Sensor for Measuring Normal and Shear Force. Soft Robot 2023; 10:1115-1125. [PMID: 37130312 DOI: 10.1089/soro.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Soft and stretchable force sensors are widely used for health monitoring, robotics, prosthetics, and other applications. Soft force sensors with the capability of measuring both normal and shear force could offer even greater functionality and provide more information, particularly in the field of biomechanics. In this work, a new solid-state force sensor is proposed that can measure both normal and shear forces at the same time. The soft and stretchable sensor was fabricated using an ionic liquid (IL)/polymer network. Two separate IL-based polymer membranes were used to detect normal and shear forces. Sensor architecture and electrical wiring for normal, shear, and combined sensing were developed, and various material compositions for different sensor layers were investigated to find the combination that could achieve the optimum sensor performance. A basic material formulation for carbon nanotube-based electrodes, the IL/polymer network, and polymeric insulation layers was proposed. To configure a combined (normal and shear) sensor, separate sensors for normal and shear deformations were first designed and investigated. Later, a combined sensor was fabricated using a mold via screen printing, photocuring, and thermal curing. The combined sensor was evaluated under different force conditions. The results show that the sensor can reliably measure normal and shear forces. Moreover, the findings demonstrate a way to successfully modulate the sensitivity for normal and shear sensing by varying the material composition or geometric configuration, which provides flexibility for application-specific designs.
Collapse
Affiliation(s)
- Omar Faruk Emon
- Department of Mechanical and Industrial Engineering and University of New Haven, West Haven, Connecticut, USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut, USA
| | - Ahadur Rahim
- Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| | - Jae-Won Choi
- Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
20
|
Ali MA, Kaium MA, Uddin SN, Uddin MJ, Olawuyi O, Campbell AD, Saint-Louis CJ, Halim MA. Elucidating the Structure, Dynamics, and Interaction of a Choline Chloride and Citric Acid Based Eutectic System by Spectroscopic and Molecular Modeling Investigations. ACS OMEGA 2023; 8:38243-38251. [PMID: 37867676 PMCID: PMC10586180 DOI: 10.1021/acsomega.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Eutectic solvent systems are versatile solvents that have found widespread use in numerous applications. Traditional solvents are homogeneous, having only one component, and their chemistry is relatively simple, with some exceptions. On the other hand, deep eutectic solvents (DESs) comprise binary components, generally a donor and an acceptor in hydrogen bonding with varying ratios. The interaction chemistry among the donor and acceptor involved in hydrogen bonding in DESs is complicated. Although numerous research is focused on the synthesis and application of DESs, few studies are reported to elucidate the complex structure and dynamic and interaction behavior of DESs. In this study, we employed calorimetry, vibrational spectroscopy techniques including FTIR and Raman, and nuclear magnetic resonance to derive insight into the structural feature and noncovalent contact of choline chloride (ChCl) and citric acid (CA) while they formed DESs. The 1:1 ChCl/CA eutectic system showed phase transitions and melting peaks with the most pronounced peak at 156.22 °C, suggesting the DESs melting at a lower temperature than the melting temperatures of ChCl and CA. In addition to IR and Raman findings, 1H NMR investigations demonstrate hydrogen bonding intermolecular interactions between ChCl and CA, supporting the formation of 1:1 ChCl/CA DESs based on the deshielded chemical shifts of the proton for Ch. The interaction of the chloride anion with the methyl protons (H4) and methylene protons (H3) of ChCl as well as the strong hydrogen bonding interactions between the hydroxyl hydrogen (H1) of ChCl with one of CA's carbonyl oxygens both supported the formation of conformer E. In addition, molecular dynamics followed by the density functional theory (DFT) was employed to visualize the structure and interaction of DESs using the ωB97XD theory and 6-311++G (d,p) basis set. Both experimental and theoretical IR, Raman, and structural analyses provided evidence of the formation of DESs by possessing hydrogen bonds. These multifaceted experimental and computational investigations provide details of structural and intermolecular interactions of ChCl/CA DESs.
Collapse
Affiliation(s)
- Md Ackas Ali
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Md Abdul Kaium
- Division
of Quantum Chemistry, The Red-Green Research
Center, BICCB, 16, Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Sayed Nesar Uddin
- Division
of Quantum Chemistry, The Red-Green Research
Center, BICCB, 16, Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Md Jaish Uddin
- Division
of Quantum Chemistry, The Red-Green Research
Center, BICCB, 16, Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Oluseyi Olawuyi
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Albert D. Campbell
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Carl Jacky Saint-Louis
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Mohammad A. Halim
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| |
Collapse
|
21
|
Sharma I, Sharma MV, Haque MA, Simal-Gandara J. Antifungal action and targeted mechanism of Bio fabricated zinc oxide (ZnO) nanoparticles against Ascochytafabae. Heliyon 2023; 9:e19179. [PMID: 37662815 PMCID: PMC10469064 DOI: 10.1016/j.heliyon.2023.e19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The current work focuses on analysing the structural, optical, and anti-fungal efficacy of ZnO nanoparticles using well diffusion agar methods and minimum inhibitory concentration (MIC). ZnO nanoparticles were created using the sol gel method. To check the synthesized material's spatial and optical characteristics, XRD, UV, and RAMAN studies were performed. The median diameter of produced nanostructures is in the region of nanometre, according to XRD measurements. Results from Raman Spectroscopy for the nanostructure are provided, together with comparisons to current development theory and reliable experimental data. The band gap of the zinc oxide sample is found by graphing (h) 2versus input photon energy and gradually decreasing the linear component of the (h) 2 to zero. The band gap energy is expressed by the line's intersection with the energy axis. Calculations show that the energy band gap is 3.22eV.The fungus Ascochytafabae is in control of the Phaseolus vulgaris L. (beans) blight disease. It mostly affects the plant's stem, leaves, and fruits. Phaseolus vulgaris plant leaf with Ascochytafabae infection was isolated, and ZnO nanoparticle effects were observed. It emerged that the synthesized ZnO nanoparticles were highly efficient against Ascochytafabae. By using the well diffusion method and an absolute concentration of ZnO nanoparticles, the maximum inhibitory concentration was 15.0 ± 0.2 mm.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Physics, Career Point University, Hamirpur, H.P., India
| | | | - M. Akful Haque
- Department of Pharmaceutical Analysis, Anurag University, Hyderabad, Telangana, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004, Ourense, Spain
| |
Collapse
|
22
|
Zhang M, Arunachalam A, Perrin H, Polat S, Groenewold J, Mendes E, Eral HB. An Edible Humidity Indicator That Responds to Changes in Humidity Mechanically. ACS APPLIED POLYMER MATERIALS 2023; 5:4780-4788. [PMID: 37469883 PMCID: PMC10353009 DOI: 10.1021/acsapm.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 07/21/2023]
Abstract
Elevated humidity levels in medical, food, and pharmaceutical products may reduce the products' shelf life, trigger bacterial growth, and even lead to complete spoilage. In this study, we report a humidity indicator that mechanically bends and rolls itself irreversibly upon exposure to high humidity conditions. The indicator is made of two food-grade polymer films with distinct ratios of a milk protein, casein, and a plasticizer, glycerol, that are physically attached to each other. Based on the thermogravimetric analysis and microstructural characterization, we hypothesize that the bending mechanism is a result of hygroscopic swelling and consequent counter diffusion of water and glycerol. Guided by this mechanism, we demonstrate that the rolling behavior, including response time and final curvature, can be tuned by the geometric dimensions of the indicator. As the proposed indicator is made of food-grade ingredients, it can be placed directly in contact with perishable products to report exposure to undesirable humidity inside the package, without the risk of contaminating the product or causing oral toxicity in case of accidental digestion, features that commercial inedible electronic and chemo-chromatic sensors cannot provide presently.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Abinaya Arunachalam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Hugo Perrin
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Sevgi Polat
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Chemical
Engineering Department, Faculty of Engineering, Marmara University, 34854 İstanbul, Turkey
| | - Jan Groenewold
- Van’t
Hoff Laboratory, Physical Chemistry, University
of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology,
Institute of Electronic Paper Displays South China Academy of Advanced
Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Eduardo Mendes
- Chemical
Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, South Holland 2629 HZ, The Netherlands
| | - Hüseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Van’t
Hoff Laboratory, Physical Chemistry, University
of Utrecht, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
23
|
Khatmullina KG, Slesarenko NA, Chernyak AV, Baymuratova GR, Yudina AV, Berezin MP, Tulibaeva GZ, Slesarenko AA, Shestakov AF, Yarmolenko OV. New Network Polymer Electrolytes Based on Ionic Liquid and SiO 2 Nanoparticles for Energy Storage Systems. MEMBRANES 2023; 13:548. [PMID: 37367752 DOI: 10.3390/membranes13060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF4 and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and SiO2 nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer-ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10-4 S cm-1 (-40 °C), 10-3 S cm-1 (25 °C) and 10-2 S cm-1 (100 °C). The method of quantum-chemical modeling of the interaction of SiO2 nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li+ BF4- ions on silicon dioxide particles and then from ions of the ionic liquid EMI+ BF4-. These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge-discharge cycles.
Collapse
Affiliation(s)
- Kyunsylu G Khatmullina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Department of Chemistry and Electrochemical Energy, Institute of Energy Efficiency and Hydrogen Technologies (IEEHT), Moscow Power Engineering Institute, National Research University, 111250 Moscow, Russia
| | - Nikita A Slesarenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Alexander V Chernyak
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Scientific Center in Chernogolovka of the Institute of Solid State Physics Named Yu.A. Osipyan RAS, 142432 Chernogolovka, Russia
| | - Guzaliya R Baymuratova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Alena V Yudina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Mikhail P Berezin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Galiya Z Tulibaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Anna A Slesarenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Alexander F Shestakov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga V Yarmolenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| |
Collapse
|
24
|
Yuan H, Gao W, Ye J, Ma T, Ma F, Wen D. Surface Hydrophobicity Engineering of Pt-Based Noble Metal Aerogels by Ionic Liquids toward Enhanced Electrocatalytic Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21143-21151. [PMID: 37092815 DOI: 10.1021/acsami.3c02101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Modulating the surface properties of electrocatalysts with ligands could effectively regulate their catalytic properties, while limited in-depth understanding of the surface ligands restricted their rational combination. Herein, ionic liquids (ILs) with different lengths of hydrophobic side chains were employed to regulate the surface hydrophobicity of noble metal aerogels, for comprehending the relationship between surface hydrophobicity and oxygen reduction reaction (ORR) activity and enhancing electrocatalytic ORR. The volcano-like trends between the hydrophobicity and the ORR activity for various Pt-based aerogels indicated that a suitable hydrophobic surface constructed by ILs was most favorable for contacting with oxygen molecules and the desorption of oxygen intermediates. Typically, the PtPd aerogel modified by ILs (PtPd aer-[MTBD][PFSI]) exhibited an inspiring ORR activity, with a 70 mV increase in half-wave potential and a 7.1-fold mass activity compared to the commercial Pt/C. Therefore, the regularity between the surface hydrophobicity and ORR activity of noble metal aerogels was uncovered and will facilitate the modulation of electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Hongxing Yuan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wei Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jianqi Ye
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Tuotuo Ma
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Fangyuan Ma
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
25
|
Harrison TR, Gupta VK, Alam P, Perriman AW, Scarpa F, Thakur VK. From trash to treasure: Sourcing high-value, sustainable cellulosic materials from living bioreactor waste streams. Int J Biol Macromol 2023; 233:123511. [PMID: 36773882 DOI: 10.1016/j.ijbiomac.2023.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
The appreciation of how conventional and fossil-based materials could be harmful to our planet is growing, especially when considering single-use and non-biodegradable plastics manufactured from fossil fuels. Accordingly, tackling climate change and plastic waste pollution entails a more responsible approach to sourcing raw materials and the adoption of less destructive end-of-life pathways. Livestock animals, in particular ruminants, process plant matter using a suite of mechanical, chemical and biological mechanisms through the act of digestion. The manure from these "living bioreactors" is ubiquitous and offers a largely untapped source of lignocellulosic biomass for the development of bio-based and biodegradable materials. In this review, we assess recent studies made into manure-based cellulose materials in terms of their material characteristics and implications for sustainability. Despite the surprisingly diverse body of research, it is apparent that progress towards the commercialisation of manure-derived cellulose materials is hindered by a lack of truly sustainable options and robust data to assess the performance against conventional materials alternatives. Nanocellulose, a natural biopolymer, has been successfully produced by living bioreactors and is presented as a candidate for future developments. Life cycle assessments from non-wood sources are however minimal, but there are some initial indications that manure-derived nanocellulose would offer environmental benefits over traditional wood-derived sources.
Collapse
Affiliation(s)
- Thomas R Harrison
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Parvez Alam
- Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; John Curtain School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Fabrizio Scarpa
- Bristol Composites Institute, University of Bristol, Bristol BS8 1TR, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
26
|
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023; 52:2497-2527. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Nayli Erdeanna Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
27
|
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS OMEGA 2023; 8:9004-9030. [PMID: 36936323 PMCID: PMC10018528 DOI: 10.1021/acsomega.2c07719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nishu Devi
- Mechanics
and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa F. Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manju Kumari Thakur
- Department
of Chemistry, Government Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School of
Engineering, University of Petroleum &
Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre
for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| |
Collapse
|
28
|
Fu D, Huang G, Xie Y, Zheng M, Feng J, Kan K, Shen J. Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11062-11075. [PMID: 36787995 DOI: 10.1021/acsami.2c21819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conductive hydrogel-based ionic skins have attracted immense attention due to their great application prospects in wearable electronic devices. However, simultaneously achieving a combination of a single hydrogel system and excellent comprehensive performance (i.e., mechanical durability, electrical sensitivity, broad-spectrum antibacterial activity, and biocompatibility) remains a challenge. Thus, a novel poly(ionic liquid) hydrogel consisting of poly(acrylamide-co-lauryl methacrylate-co-methyl-uracil-imidazolium chloride-co-2-acryloylamino-2-methyl-1-propane sulfonic acid) (AAm-LMA-MUI-AMPS) was prepared by a micellar copolymerization method. Herein, MUI serves as a supramolecular crosslinker and conductive and bacteriostatic components. Owing to the multiple supramolecular crosslinks and hydrophobic association in the network, the hydrogel exhibits excellent mechanical properties (624 kPa of breaking stress and 1243 kPa of compression stress), skin-like modulus (46.2 kPa), stretchability (1803%), and mechanical durability (200 cycles under 500% strain can be completely recovered). Moreover, with the coordinated combination of each monomer, the hydrogel exhibits the unique advantage of high conductivity (up to 59.34 mS/cm). Hence, the hydrogel was further assembled as an ionic skin sensor, which exhibited a gauge factor (GF) of 10.74 and 7.27 with and without LiCl over a broad strain range (1-1000%), respectively. Furthermore, the hydrogel sensor could monitor human movement in different strain ranges, including body movement and vocal cord vibration. In addition, the antibacterial activity and biocompatibility of the hydrogel sensor were investigated. These findings present a new strategy for the design of new-generation wearable devices with multiple functions.
Collapse
Affiliation(s)
- Dong Fu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Guoqing Huang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Yang Xie
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Mingming Zheng
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Ji Feng
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Kan Kan
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Jun Shen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
29
|
Control of the composition of matrix resin for the design of MABS resin with good transparency and toughness. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Kaur H, Siwal SS, Saini RV, Singh N, Thakur VK. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS NANOSCIENCE AU 2022; 3:1-27. [PMID: 37101467 PMCID: PMC10125382 DOI: 10.1021/acsnanoscienceau.2c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, United Kingdom
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|