1
|
Kim YH, Kim HS, Hong IS. Advances in biomaterials-based tissue engineering for regeneration of female reproductive tissues. Biofabrication 2025; 17:022001. [PMID: 39854843 DOI: 10.1088/1758-5090/adae38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
The anatomical components of the female reproductive system-comprising the ovaries, uterus, cervix, vagina, and fallopian tubes-interact intricately to provide the structural and hormonal support essential for reproduction. However, this system is susceptible to various detrimental factors, both congenital and acquired, that can impair fertility and adversely affect quality of life. Recent advances in bioengineering have led to the development of sophisticated three-dimensional models that mimic the complex architecture and functionality of reproductive organs. These models, incorporating diverse cell types and tissue layers, are crucial for understanding physiological processes within the reproductive tract. They offer insights into decidualization, ovulation, folliculogenesis, and the progression of reproductive cancers, thereby enhancing personalized medical treatments and addressing female infertility. This review highlights the pivotal role of tissue engineering in diagnosing and treating female infertility, emphasizing the importance of considering factors like biocompatibility, biomaterial selection, and mechanical properties in the design of bioengineered systems. The challenge of replicating the functionally specialized and structurally complex organs, such as the uterus and ovary, underscores the need for reliable techniques that improve morphological and functional restoration. Despite substantial progress, the goal of creating a fully artificial female reproductive system is still a challenge. Nonetheless, the recent fabrication of artificial ovaries, uteruses, cervixes, and vaginas marks significant advancements toward this aim. Looking forward, the challenges in bioengineering are expected to spur further innovations in both basic and applied sciences, potentially hastening the clinical adoption of these technologies.
Collapse
Affiliation(s)
- Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
2
|
Singh A, Singh N, Jinugu ME, Thareja P, Bhatia D. Programmable soft DNA hydrogels stimulate cellular endocytic pathways and proliferation. BIOMATERIALS ADVANCES 2025; 166:214040. [PMID: 39293253 DOI: 10.1016/j.bioadv.2024.214040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Hydrogels are pivotal in tissue engineering, regenerative medicine, and drug delivery applications. Existing hydrogel platforms are not easily customizable and often lack precise programmability, making them less suited for 3D tissue culture and programming of cells. DNA molecules stand out among other promising biomaterials due to their unparalleled precision, programmability, and customization. In this study, we introduced a palette of novel cellular scaffolding platforms made of pure DNA-based hydrogel systems while improving the shortcomings of the existing platforms. We showed a quick and easy one step synthesis of DNA hydrogels using thermal annealing based on sequence specific hybridization strategy. We also demonstrated the formation of multi-armed branched supramolecular scaffolds with custom mechanical stiffness, porosity, and network density by increasing or decreasing the number of branching arms. These mechanically tuneable DNA hydrogels proved to be a suitable suitable platform for modulating the physiological processes of retinal pigment epithelial cells (RPE1). In-vitro studies showed dynamic changes at multiple levels, ranging from a change in morphology to protein expression patterns, enhanced membrane traffic, and proliferation. The soft DNA hydrogels explored here are mechanically compliant and pliable, thus excellently suited for applications in cellular programming and reprogramming. This research lays the groundwork for developing a DNA hydrogel system with a higher dynamic range of stiffness, which will open exciting avenues for tissue engineering and beyond.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Nihal Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India; Dr. Kiran C Patel Center for Sustainable Development (KPCSD), Indian Institute of Technology Gandhinagar, India
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
3
|
Peng L, Gu S, Hou M, Hou X. DNA Hydrogels for Cancer Diagnosis and Therapy. Chembiochem 2024; 25:e202400494. [PMID: 39166348 DOI: 10.1002/cbic.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Nucleic acids, because of their precise pairing and simple composition, have emerged as excellent materials for the formation of gels. The application of DNA hydrogels in the diagnosis and therapy of cancer has expanded significantly through research on the properties and functions of nucleic acids. Functional nucleic acids (FNAs) such as aptamers, Small interfering RNA (siRNA), and DNAzymes have been incorporated into DNA hydrogels to enhance their diagnostic and therapeutic capabilities. This review discusses various methods for forming DNA hydrogels, with a focus on pure DNA hydrogels. We then explore the innovative applications of DNA hydrogels in cancer diagnosis and therapy. DNA hydrogels have become essential biomedical materials, and this review provides an overview of current research findings and the status of DNA hydrogels in the diagnosis and therapy of cancer, while also exploring future research directions.
Collapse
Affiliation(s)
- Li Peng
- Oncology, The Affiliated XiangTan Central Hospital of Hunan University, Xiangtan 411199, P. R. China, Changsha 410082, China
| | - Shuang Gu
- Oncology, The Affiliated XiangTan Central Hospital of Hunan University, Xiangtan 411199, P. R. China, Changsha 410082, China
| | - Min Hou
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, P. R. China
| | - Xiaohua Hou
- Neurology, Ningxiang City Hospital of Traditional Chinese Medicine, Changsha, 410600, P. R. China
| |
Collapse
|
4
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024; 8:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
5
|
Liu F, Li X, Li Y, Xu S, Guo C, Wang L. Visualization of drug release in a chemo-immunotherapy nanoplatform via ratiometric 19F magnetic resonance imaging. Chem Sci 2024:d4sc03643c. [PMID: 39364076 PMCID: PMC11446317 DOI: 10.1039/d4sc03643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Visualization of drug release in vivo is crucial for improving therapeutic efficacy and preventing inappropriate medication dosing, yet, challenging. Herein, we report a pH-activated chemo-immunotherapy nanoplatform with visualization of drug release in vivo by ratiometric 19F magnetic resonance imaging (19F MRI). This nanoplatform consists of ultra-small histamine-modified perfluoro-15-crown-5-ether (PFCE) nanodroplets loaded with doxorubicin (Dox), which are packaged in trifluoromethyl-containing metal-organic assemblies via coordination-driven self-assembly. The chemical shifts of two types of 19F atoms in the nanoplatform are significantly different in 19F nuclear magnetic resonance (NMR) spectra, which facilitates the implementation of ratiometric 19F MRI without any signal crosstalk. In an acidic tumor microenvironment, this nanoplatform gradually degrades, which results in a sustained drug release with a real-time change in the ratiometric 19F MRI signal. Therefore, a linear correlation between the Dox release profile and ratiometric 19F MRI signal is established to visualize Dox release. Moreover, the pH-triggered disassembly of the nanoplatform leads to cell pyroptosis, which evokes immunogenic cell death (ICD), resulting in the regression of the primary tumor and inhibition of distal tumor growth. This study provides the proof-of-concept application of ratiometric 19F MRI to visualize drug release in vivo.
Collapse
Affiliation(s)
- Fanqi Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xindi Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yumin Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
6
|
Chen Y, Yu M, Liu M, Sun Y, Ling C, Yu M, Zhang W, Zhang W, Peng X. A Solvent Exchange Induced Robust Wet Adhesive Hydrogels to Treat Solid Tumor Through Synchronous Ethanol Ablation and Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309760. [PMID: 38582506 PMCID: PMC11200021 DOI: 10.1002/advs.202309760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The treatment of tumors in developing countries, especially those with poor medical conditions, remains a significant challenge. Herein, a novel solvent-exchange strategy to prepare adhesive hydrogels for the concurrent treatment of tumors through synchronous ethanol ablation and local chemotherapy is reported. First, a poly (gallic acid-lipoic acid) (PGL) ethanol gel is prepared that can undergo solvent exchange with water to form a hydrogel in situ. PGL ethanol gel deposited on the wet tissue can form a hydrogel in situ to effectively repel interfacial water and establish a tight contact between the hydrogel and tissue. Additionally, the functional groups between the hydrogels and tissues can form covalent and non-covalent bonds, resulting in robust adhesion. Furthermore, this PGL ethanol gel demonstrates exceptional capacity to effectively load antitumor drugs, allowing for controlled and sustained release of the drugs locally and sustainably both in vitro and in vivo. In addition, the PGL ethanol gel can combine ethanol ablation and local chemotherapy to enhance the antitumor efficacy in vitro and in vivo. The PGL ethanol gel-derived hydrogel shows robust wet bioadhesion, drug loading, sustained release, good biocompatibility and biodegradability, easy preparation and usage, and cost-effectiveness, which make it a promising bioadhesive for diverse biomedical applications.
Collapse
Affiliation(s)
- Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Meng Yu
- Department of NeonatologyThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Department of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Yang Sun
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Department of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Chengxian Ling
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Mingyu Yu
- Department of OrthopedicsThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Wenwen Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Wenkai Zhang
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
- Guangdong‐Hong Kong‐Macao University Joint Laboratory of Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000China
| |
Collapse
|
7
|
Jeon K, Lee C, Lee JY, Kim DN. DNA Hydrogels with Programmable Condensation, Expansion, and Degradation for Molecular Carriers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38696548 DOI: 10.1021/acsami.3c17633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Molecular carriers are necessary for the controlled release of drugs and genes to achieve the desired therapeutic outcomes. DNA hydrogels can be a promising candidate in this application with their distinctive sequence-dependent programmability, which allows precise encapsulation of specific cargo molecules and stimuli-responsive release of them at the target. However, DNA hydrogels are inherently susceptible to the degradation of nucleases, making them vulnerable in a physiological environment. To be an effective molecular carrier, DNA hydrogels should be able to protect encapsulated cargo molecules until they reach the target and release them once they are reached. Here, we develop a simple way of controlling the enzyme resistance of DNA hydrogels for cargo protection and release by using cation-mediated condensation and expansion. We found that DNA hydrogels condensed by spermine are highly resistant to enzymatic degradation. They become degradable again if expanded back to their original, uncondensed state by sodium ions interfering with the interaction between spermine and DNA. These controllable condensation, expansion, and degradation of DNA hydrogels pave the way for the development of DNA hydrogels as an effective molecular carrier.
Collapse
Affiliation(s)
- Kyounghwa Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Ai S, Gao Q, Cheng G, Zhong P, Cheng P, Ren Y, Wang H, Zhu X, Guan S, Qu X. Construction of an Injectable Composite Double-Network Hydrogel as a Liquid Embolic Agent. Biomacromolecules 2024; 25:2052-2064. [PMID: 38426456 DOI: 10.1021/acs.biomac.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Conventional embolists disreputably tend to recanalization arising from the low filling ratio due to their rigidity or instability. As a result, intelligent hydrogels with a tunable modulus may meaningfully improve the therapeutic efficacy. Herein, an injectable composite double-network (CDN) hydrogel with high shear responsibility was prepared as a liquid embolic agent by cross-linking poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMC) via dynamic covalent bonding of borate ester and benzoic-imine. A two-dimensional nanosheet, i.e., layered double hydroxide (LDH), was incorporated into the network through physical interactions which led to serious reduction of yield stress for the injection of the hydrogel and the capacity for loading therapeutic agents like indocyanine green (ICG) and doxorubicin (DOX) for the functions of photothermal therapy (PTT) and chemotherapy. The CDN hydrogel could thus be transported through a thin catheter and further in situ strengthened under physiological conditions, like in blood, by secondarily cross-linking with phosphate ions for longer degradation duration and better mechanical property. These characteristics met the requirements of arterial interventional embolization, which was demonstrated by renal embolism operation on rabbits, and meanwhile favored the inhibition of subcutaneous tumor growth on an animal model. Therefore, this work makes a breakthrough in the case of largely reducing the embolism risks, thus affording a novel generation for interventional embolization.
Collapse
Affiliation(s)
- Shili Ai
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinzong Gao
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Gele Cheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- Duke Kunshan University, Suzhou, Jiangsu 215316, China
| | - Pengfei Zhong
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Peiyu Cheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hao Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Anil A, Chaskar J, Pawar AB, Tiwari A, Chaskar AC. Recent advances in DNA-based probes for photoacoustic imaging. J Biotechnol 2024; 382:8-20. [PMID: 38211667 DOI: 10.1016/j.jbiotec.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.
Collapse
Affiliation(s)
- Anusri Anil
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Jyotsna Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Avinash B Pawar
- Department of Chemistry, Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite College of Arts, Science & Commerce, Pune 411038, India
| | - Abhishekh Tiwari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India.
| | - Atul Changdev Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India; Department of Chemistry, Institute of Chemical Technology, Mumbai.
| |
Collapse
|
10
|
Wang YP, Zhang Y, Duan XH, Mao JJ, Pan M, Shen J, Su CY. Recent progress in metal-organic cages for biomedical application: Highlighted research during 2018–2023. Coord Chem Rev 2024; 501:215570. [DOI: 10.1016/j.ccr.2023.215570] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
11
|
Zhang H, Hu L, Xiao W, Su Y, Cao D. An injectable, in situ forming and NIR-responsive hydrogel persistently reshaping tumor microenvironment for efficient melanoma therapy. Biomater Res 2023; 27:118. [PMID: 37981704 PMCID: PMC10659094 DOI: 10.1186/s40824-023-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Melanoma is a highly aggressive form of skin cancer with increasing incidence and mortality rates. Chemotherapy, the primary treatment for melanoma, is limited by hypoxia-induced drug resistance and suppressed immune response at the tumor site. Modulating the tumor microenvironment (TME) to alleviate hypoxia and enhance immune response has shown promise in improving chemotherapy outcomes. METHODS In this study, a novel injectable and in situ forming hydrogel named MD@SA was developed using manganese dioxide (MnO2) nanosheets pre-loaded with the chemotherapy drug doxorubicin (DOX) and mixed with sodium alginate (SA). The sustainable drug delivery, oxygen generation ability, and photothermal property of MD@SA hydrogel were characterized. The therapeutic efficacy of hydrogel was studied in B16F10 in vitro and B16F10 tumor-bearing mice in vivo. The immune effects on macrophages were analyzed by flow cytometry, real-time quantitative reverse transcription PCR, and immunofluorescence analyses. RESULTS The MD@SA hydrogel catalyzed the tumoral hydrogen peroxide (H2O2) into oxygen, reducing the hypoxic TME, down-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and drug efflux pump P-glycoprotein (P-gp). The improved TME conditions enhanced the uptake of DOX by melanoma cells, enhancing its efficacy and facilitating the release of tumor antigens. Upon NIR irradiation, the photothermal effect of the hydrogel induced tumor apoptosis to expose more tumor antigens, thus re-educating the M2 type macrophage into the M1 phenotype. Consequently, the MD@SA hydrogel proposes an ability to constantly reverse the hypoxic and immune-inhibited TME, which eventually restrains cancer proliferation. CONCLUSION The injectable and in situ forming MD@SA hydrogel represents a promising strategy for reshaping the TME in melanoma treatment. By elevating oxygen levels and activating the immune response, this hydrogel offers a synergistic approach for TME regulation nanomedicine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Liangshan Hu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yanqiong Su
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
12
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
13
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Zhang C, Huang H, Chen J, Zuo T, Ou Q, Ruan G, He J, Ding C. DNA Supramolecular Hydrogel-Enabled Sustained Delivery of Metformin for Relieving Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16369-16379. [PMID: 36945078 DOI: 10.1021/acsami.2c20496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder affecting ∼500 million people worldwide. Metformin (MET), as an oral hypoglycemic drug approved by the Food and Drug Administration, has displayed promising potential for treating OA. Nonetheless, in the articular cavity, MET suffers from rapid clearance and cannot circumvent the severe inflammatory environment, greatly confining the therapeutic efficacy. Herein, DNA supramolecular hydrogel (DSH) has been utilized as a sustained drug delivery vehicle for MET to treat OA, which dramatically prolonged the retention time of MET in the articular cavity from 3 to 14 days and simultaneously exerted a greater anti-inflammatory effect. Our delivery platform, termed MET@DSH, better protects cartilage than single-agent MET. Additionally, the corresponding molecular mechanisms underlying the therapeutic effects were also analyzed. We anticipate this DNA supramolecular hydrogel-enabled sustained drug delivery and anti-inflammatory strategy will reshape the current landscape of OA treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Department of Rheumatology and Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hong Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Department of Rheumatology and Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Tingting Zuo
- College of Biological and Geographical Sciences, Yili Normal University, Yining, Xingjiang 835000, China
| | - Qianhua Ou
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|