1
|
Starkholm A, Al-Sabbagh D, Sarisozen S, von Reppert A, Rössle M, Ostermann M, Unger E, Emmerling F, Kloo L, Svensson PH, Lang F, Maslyanchuk O. Green Fabrication of Sulfonium-Containing Bismuth Materials for High-Sensitivity X-Ray Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418626. [PMID: 40207598 DOI: 10.1002/adma.202418626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Organic-inorganic hybrid materials based on lead and bismuth have recently been proposed as novel X- and gamma-ray detectors for medical imaging, non-destructive testing, and security, due to their high atomic numbers and facile preparation compared to traditional materials like amorphous selenium and Cd(Zn)Te. However, challenges related to device operation, excessively high dark currents, and long-term stability have delayed commercialization. Here, two novel semiconductors incorporating stable sulfonium cations are presented, [(CH3CH2)3S]6Bi8I30 and [(CH3CH2)3S]AgBiI5, synthesized via solvent-free ball milling and fabricated into dense polycrystalline pellets using cold isostatic compression, two techniques that can easily be upscaled, for X-ray detection application. The fabricated detectors exhibit exceptional sensitivities (14 100-15 190 µC Gyair -1 cm-2) and low detection limits (90 nGyair s-1 for [(CH3CH2)3S]6Bi8I30 and 78 nGyair s-1 for [(CH3CH2)3S]AgBiI5), far surpassing current commercial detectors. Notably, they maintain performance after 9 months of ambient storage. The findings highlight [(CH3CH2)3S]6Bi8I30 and [(CH3CH2)3S]AgBiI5 as scalable, cost-effective and highly stable alternatives to traditional semiconductor materials, offering great potential as X-ray detectors in medical and security applications.
Collapse
Affiliation(s)
- Allan Starkholm
- Department Solution-Processing of Hybrid Materials and Devices, Helmholtz-Zentrum Berlin, 14109, Berlin, Germany
| | - Dominik Al-Sabbagh
- Department of Materials Chemistry, Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Sema Sarisozen
- Freigeist Juniorgroup, Radiation Tolerant Electronics with Soft Semiconductors (ROSI), University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Alexander von Reppert
- Soft Matter Physics and Optoelectronics Group, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Matthias Rössle
- Research Group Ultrafast Dynamics, Helmholtz-Zentrum Berlin, 14109, Berlin, Germany
| | - Markus Ostermann
- Department of Process Analytical Technology, Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Eva Unger
- Department Solution-Processing of Hybrid Materials and Devices, Helmholtz-Zentrum Berlin, 14109, Berlin, Germany
| | - Franziska Emmerling
- Department of Materials Chemistry, Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Lars Kloo
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-114 28, Sweden
| | - Per H Svensson
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-114 28, Sweden
| | - Felix Lang
- Freigeist Juniorgroup, Radiation Tolerant Electronics with Soft Semiconductors (ROSI), University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Olena Maslyanchuk
- Department Solution-Processing of Hybrid Materials and Devices, Helmholtz-Zentrum Berlin, 14109, Berlin, Germany
| |
Collapse
|
2
|
Guo H, Yuan L, Dong Y, Fan K, Lam M, Duan C, Zou S, Wong KS, Yan K. Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss. SMALL METHODS 2025:e2500141. [PMID: 40195896 DOI: 10.1002/smtd.202500141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Indexed: 04/09/2025]
Abstract
The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm2) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm2 mini-modules (12 cm2 active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.
Collapse
Affiliation(s)
- Huan Guo
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Ligang Yuan
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Key Laboratory of Nondestructive Testing Ministry of Education, School of the Testing and Photoelectric Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Yuyan Dong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Kezhou Fan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Manyu Lam
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chenghao Duan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Shibing Zou
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Kam Sing Wong
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| |
Collapse
|
3
|
Zhang A, Tie S, Lu X, Tian W, Fan Z, Dong S, Yuan R, Wu C, Zheng X. High-Performance Perovskite Flat Panel X-Ray Imagers via Blade Coating. SMALL METHODS 2025; 9:e2401342. [PMID: 39654528 DOI: 10.1002/smtd.202401342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Indexed: 04/25/2025]
Abstract
Perovskite X-ray detectors are recognized as the most promising candidates for low-dose detectors due to their superior performance. However, it is still full of challenging in the fabrication of flat-panel X-ray imagers (FPXIs), primarily due to the absence of large area thick films that exhibit high uniformity and long-term performance stability. A general synthesis route is urgently needed to grow large-scale halide perovskite thick films directly on a pixeled thin-film transistor (TFT) backplane with high uniformity, closing the gap between the great potential of perovskite X-ray detectors and their entry into the market. In this work, an advanced precursor paste suitable for blade coating is developed to enable high-throughput manufacturing of FPXIs. Highly uniform perovskite films with a thickness of 300-micrometers are directly deposited onto pixeled TFT substrates by the blade-coating method using the above paste, which governs a stable dark current and minimal noise of the X-ray detectors. As a result, (BA)2(MA)9Pb10I31 perovskite X-ray detectors achieved a high sensitivity of 15200 µC Gyair -1 cm-2 and a limit of detection (LoD) of 26.8 nGyair s-1. Moreover, FPXIs with a spatial resolution of 0.95 lp mm-1 (0.475 lp pixel-1) are obtained, which exhibits negligible signal crosstalk and excellent X-ray imaging performance.
Collapse
Affiliation(s)
- Aiping Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Shujie Tie
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Xiaojuan Lu
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Wanjia Tian
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Zhenghui Fan
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Siyin Dong
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Ruihan Yuan
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Congcong Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaojia Zheng
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| |
Collapse
|
4
|
Guo F, Hu F, Song Y, Wang L, Gao Z, Tao X. High-Performance Oxide Crystal BaTeW 2O 9 X-ray Detector with High Stability, Low Detection Limit, and Ultralow Dark Current Drift. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9530-9538. [PMID: 39873537 DOI: 10.1021/acsami.4c17909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeW2O9 (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied. At 120 keV hard X-ray photon energy, the BTW SC X-ray detectors along the crystallographic a-, b-, and c-axes directions achieved high sensitivities of 371, 404, and 368 μC Gyair-1 cm-2 respectively. More importantly, no dark current drift phenomenon was observed in the BTW SC X-ray detectors. The dark current drifts along the crystallographic a-, b-, and c-axes directions are as low as 7.81 × 10-9, 8.61 × 10-9, and 7.71 × 10-9 nA cm-1 s-1 V-1, respectively. In addition, the BTW SC X-ray detector has an ultralow detection limit of 21.9 nGyair s-1. Our research provides a new X-ray detection material with potential application value and a new material design strategy for the field of radiation detection.
Collapse
Affiliation(s)
- Feifei Guo
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fuai Hu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yufei Song
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lei Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeliang Gao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Yin Q, Wu J, Zhu ZK, Ye H, Li R, Zhu T, Geng Y, Xu L, Han Z, Zhang C, Luo J. Chiral-Polar Alternating Cation Intercalation-Type Perovskite Enables Sensitive Self-Driven X-ray Detection with an Ultralow Detection Limit. J Phys Chem Lett 2024; 15:12348-12356. [PMID: 39651767 DOI: 10.1021/acs.jpclett.4c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Metal halide perovskites (MHPs) have shown great potential for direct X-ray detection, but achieving high sensitivity without external bias remains challenging. Chiral-polar alternating cation intercalation (ACI)-type MHPs, with excellent optoelectronic properties and a robust chirality-induced bulk photovoltaic effect (BPVE), offer a promising platform for self-driven X-ray detection. Herein, impressive self-driven X-ray detection performance was achieved by utilizing chiral-polar 2D ACI-type perovskite single crystals of (R-PPA)PAPbBr4 (1R; R-PPA = R-1-phenylpropylamine; PA = propylamine). The chiral R-PPA cations induce the crystallization of 1R in the chiral-polar space group P21, wherein its spontaneous electric polarization further induces a strong BPVE. Consequently, 1R shows remarkable radiation photovoltaics of 0.75 V, which endows its excellent self-driven X-ray detection with a high sensitivity of 417.2 μC Gy-1 cm-2 and a low detection limit of 24.1 nGy s-1, meeting the state-of-the-art level by leveraging its intrinsic photovoltaic effect. These findings highlight the huge potential of chiral-polar ACI-type MHPs in self-driven X-ray detection applications.
Collapse
Affiliation(s)
- Qiuxiao Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zeng-Kui Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Huang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yaru Geng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lijun Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhangtong Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengshu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Wu W, Zhang J, Liu C, Zhang J, Lai H, Hu Z, Zhou H. Spontaneous Cooling Enables High-Quality Perovskite Wafers for High-Sensitivity X-Ray Detectors with a Low-Detection Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410303. [PMID: 39429205 PMCID: PMC11633536 DOI: 10.1002/advs.202410303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Developing high-quality perovskite wafers is essential for integrating perovskite technology throughout the chip industry chain. In this article, a spontaneous cooling strategy with a hot-pressing technique is presented to develop high-purity, wafer-scale, pinhole-free perovskite wafers with a reflective surface. This method can be extended to a variety of perovskite wafers, including organic-inorganic, 2D, and lead-free perovskites. Besides, the size of the wafer with diameters of 10, 15, and 20 mm can be tailored by changing the mold. Furthermore, the mechanism of spontaneous cooling for improving the quality of perovskite wafers is revealed. Finally, the high-quality lead-free Cs3Cu2I5 perovskite wafers demonstrate excellent X-ray detection performances with a high sensitivity of 3433.6 µC Gyair -1 cm-2 and a low detection limit of 33.17 nGyair s-1. Moreover, the Cs3Cu2I5 wafers exhibit outstanding environmental and operational stability even without encapsulation. These research presents a spontaneous cooling strategy to achieve wafer-scale, high-quality perovskites with mirror-like surfaces for X-ray detection, paving the way for integrating perovskites into electronic and optoelectronic devices and promoting the practical application of perovskite X-ray detectors.
Collapse
Affiliation(s)
- Wenyi Wu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jianqiang Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Ciyu Liu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jiankai Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Hoajie Lai
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Zhongqiang Hu
- School of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049P. R. China
| | - Hai Zhou
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| |
Collapse
|
7
|
Gupta S, Bhattacharyya S. Footprints of scanning probe microscopy on halide perovskites. Chem Commun (Camb) 2024; 60:11685-11701. [PMID: 39295277 DOI: 10.1039/d4cc03658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Scanning probe microscopy (SPM) and advanced atomic force microscopy (AFM++) have become pivotal for nanoscale elucidation of the structural, optoelectronic and photovoltaic properties of halide perovskite single crystals and polycrystalline films, both under ex situ and in situ conditions. These techniques reveal detailed information about film topography, compositional mapping, charge distribution, near-field electrical behaviors, cation-lattice interactions, ion dynamics, piezoelectric characteristics, mechanical durability, thermal conductivity, and magnetic properties of doped perovskite lattices. This article outlines the advancements in SPM techniques that deepen our understanding of the optoelectronic and photovoltaic performances of halide perovskites.
Collapse
Affiliation(s)
- Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
8
|
Ba Y, Zhu W, Xu Z, Jiang S, Yang M, Bai F, Xi H, Chen D, Zhang J, Zhang C, Hao Y. Wafer-Sized CsPbBr 3/CsPbCl 3 Heterojunction: Breaking the Trade-Off between Sensitivity and Dark Current for Efficient X-ray Detector. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361505 DOI: 10.1021/acsami.4c12010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Polycrystalline lead halide perovskite finds promising use in fabricating X-ray detectors with a large lateral size, adjustable thickness, and diverse synthesis processes. However, a large dark current hinders its development for weak signal detection. Herein, we propose a multistep pressing strategy for manufacturing a CsPbBr3/CsPbCl3 heterojunction wafer for a reduced dark current X-ray detector, and the device keeps a high sensitivity value after the insertion of a barrier by heterojunction; thus, the trade-off between sensitivity and dark current can be broken. The X-ray detector with a metal-semiconductor-metal structure yields a sensitivity of 6.32 × 104 μC Gyair-1 cm-2 at a bias of 12 V, a 1/f noise of 1.02 × 10-13 A/Hz-1/2, and a detection limit of 66.58 nGy s-1. These performance parameters are considerably better than those of a similar X-ray detector based on the single-structure wafer. The improved device performance of the heterostructure X-ray detector is ascribed to the suppressed carrier recombination, enhanced carrier transportation of the heterojunction, and strong X-ray attenuation of the CsPbCl3 layer. The pixel array device is further used in imaging applications. Hence, this study provides an efficient strategy for fabricating heterostructure polycrystalline lead halide perovskite wafers for use in high-performance wafer-based X-ray detectors.
Collapse
Affiliation(s)
- Yanshuang Ba
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Weidong Zhu
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China
| | - Zhuangjie Xu
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Shaohua Jiang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Mei Yang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Fuhui Bai
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - He Xi
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Dazheng Chen
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China
| | - Jincheng Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Chunfu Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China
| | - Yue Hao
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
9
|
Chen Y, Niu S, Li Y, Dou W, Yang X, Shan C, Shen G. Flexible Single Microwire X-Ray Detector with Ultrahigh Sensitivity for Portable Radiation Detection System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404656. [PMID: 39155814 DOI: 10.1002/adma.202404656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Sensitive, flexible, and low false alarm rate X-ray detector is crucial for medical diagnosis, industrial inspection, and scientific research. However, most semiconductors for X-ray detectors are susceptible to interference from ambient light, and their high thickness hinders their application in wearable electronics. Herein, a flexible visible-blind and ultraviolet-blind X-ray detector based on Indium-doped Gallium oxide (Ga2O3:In) single microwire is prepared. Joint experiment-theory characterizations reveal that the Ga2O3:In microwire possess a high crystal quality, large band gap, and satisfactory stability, and reliability. On this basis, an extraordinary sensitivity of 5.9 × 105 µC Gyair -1 cm-2 and a low detection limit of 67.4 nGyair s-1 are achieved based on the prepared Ag/Ga2O3:In/Ag device, which has outstanding operation stability and excellent high temperature stability. Taking advantage of the flexible properties of the single microwire, a portable X-ray detection system is demonstrated that shows the potential to adapt to flexible and lightweight formats. The proposed X-ray detection system enables real-time monitor for X-rays, which can be displayed on the user interface. More importantly, it has excellent resistance to natural light interference, showing a low false alarm rate. This work provides a feasible method for exploring high-performance flexible integrated micro/nano X-ray detection devices.
Collapse
Affiliation(s)
- Yancheng Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Shifeng Niu
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenjie Dou
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xun Yang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
10
|
Chen G, Dai H, Zhu ZK, Wu J, Yu P, Zeng Y, Zheng Y, Xu L, Luo J. Dion-Jacobson Type Lead-Free Double Perovskite with Ultra-Narrow Aromatic Interlayer Spacing for Highly Sensitive and Stable X-ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312281. [PMID: 38456782 DOI: 10.1002/smll.202312281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/07/2024] [Indexed: 03/09/2024]
Abstract
The low-toxic and environmentally friendly 2D lead-free perovskite has made significant progress in the exploration of "green" X-ray detectors. However, the gap in detection performance between them and their lead-based analogues remains a matter of concern that cannot be ignored. To reduce this gap, shortening the interlayer spacing to accelerate the migration and collection of X-ray carriers is a promising strategy. Herein, a Dion-Jacobson (DJ) lead-free double perovskite (4-AP)2AgBiBr8 (1, 4-AP = 4-amidinopyridine) with an ultra-narrow interlayer spacing of 3.0 Å, is constructed by utilizing π-conjugated aromatic spacers. Strikingly, the subsequent enhanced carrier transport and increased crystal density lead to X-ray detectors based on bulk single crystals of 1 with a high sensitivity of 1117.3 µC Gy-1 cm-2, superior to the vast majority of similar double perovskites. In particular, the tight connection of the inorganic layers by the divalent cations enhances structural rigidity and stability, further endowing 1 detector with ultralow dark current drift (3.06 × 10-8 nA cm-1 s-1 V-1, 80 V), excellent multiple cycles switching X-ray irradiation stability, as well as long-term environmental stability (maintains over 94% photoresponse after 90 days). This work brings lead-free double perovskites one step closer to realizing efficient practical green applications.
Collapse
Affiliation(s)
- Guirong Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Hongliang Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Zeng-Kui Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Panpan Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Ying Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Yingying Zheng
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| | - Lijun Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junhua Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
11
|
Zhong H, You S, Wu J, Zhu ZK, Yu P, Li H, Wu ZY, Li Y, Guan Q, Dai H, Qu C, Wang J, Chen S, Ji C, Luo J. Multiple Interlayer Interactions Enable Highly Stable X-ray Detection in 2D Hybrid Perovskites. JACS AU 2024; 4:2393-2402. [PMID: 38938789 PMCID: PMC11200223 DOI: 10.1021/jacsau.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Metal halide perovskites have outperformed conventional inorganic semiconductors in direct X-ray detection due to their ease of synthesis and intriguing photoelectric properties. However, the operational instability caused by severe ion migration under a high external electric field is still a big concern for the practical application of perovskite detectors. Here, we report a 2D (BPEA)2PbI4 (BPEA = R-1-(4-bromophenyl)ethylammonium) perovskite with Br-substituted aromatic spacer capable of introducing abundant interactions, e.g., the molecular electrostatic forces between Br atoms and aromatic rings and halogen bonds of Br-I, in the interlayer space, which effectively suppresses ion migration and thus enables superior operational stability. Constructing direct X-ray detectors based on high-quality single crystals of (BPEA)2PbI4 results in a high sensitivity of 1,003 μC Gy-1 cm-2, a low detection limit of 366 nGy s-1, and an ultralow baseline drift of 3.48 × 10-8 nA cm-1 s-1 V-1 at 80 V bias. More strikingly, it also exhibits exceptional operational stability under high flux, long-time X-ray irradiation, and large working voltage. This work shows an integration of multiple interlayer interactions to stabilize perovskite X-ray detectors, providing new insights into the future design of perovskite optoelectronic devices toward practical application.
Collapse
Affiliation(s)
- Haiqing Zhong
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- College
of Chemistry and Materials Science, Fujian
Normal University, Fuzhou, Fujian 350007, China
| | - Shihai You
- Research
Institute of Frontier Science, Southwest
Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jianbo Wu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Panpan Yu
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hang Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Zi-Yang Wu
- Kuang Yaming
Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Li
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qianwen Guan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Hongliang Dai
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chang Qu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- College
of Chemistry and Materials Science, Fujian
Normal University, Fuzhou, Fujian 350007, China
| | - Jiahong Wang
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shuang Chen
- Kuang Yaming
Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chengmin Ji
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Junhua Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
- College
of Chemistry and Materials Science, Fujian
Normal University, Fuzhou, Fujian 350007, China
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
12
|
Wang J, Yang JH, Chen J, Wang SH, Chen YJ, Xu G. 1D Pb halide perovskite-like materials for high performance X-ray detection. Chem Commun (Camb) 2024; 60:3311-3314. [PMID: 38426870 DOI: 10.1039/d4cc00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The strategy of bandgap regulation is important for X-ray detection, but has not been reported for 1D Pb halide perovskite materials. In this work, three such materials, 1, 2 and 3, with a tunable bandgap, were fabricated for application in X-ray detection. 3 shows high sensitivity, far superior to commercial X-ray detectors.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jin-Hai Yang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Science (UCAS), Beijing 100049, China
| | - Shuai-Hua Wang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Science (UCAS), Beijing 100049, China
| | - Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- University of Chinese Academy of Science (UCAS), Beijing 100049, China
| |
Collapse
|
13
|
Mi J, Li Q, Li B, Wang W, Wang S, Zheng F, Guo G. Efficient Direct X-ray Detection and Imaging Based on a Lead-Free Electron Donor-Acceptor MOF. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9002-9011. [PMID: 38344979 DOI: 10.1021/acsami.3c16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metal-organic frameworks (MOFs) have recently gained extensive attention as potential materials for direct radiation detection due to their strong radiation absorption, long-range order, and chemical tunability. However, it remains challenging to develop a practical MOF-based X-ray direct detector that possesses high X-ray detection efficiency, radiation stability, and environmental friendliness. The integration of donor-acceptor (D-A) pairs into crystalline MOFs is a powerful strategy for the precise fabrication of multifunctional materials with unique optoelectronic properties. Herein, a new lead-free MOF, Cu2I2(TPPA) (CuI-TPPA, TPPA = tris[4-(pyridine-4-yl)phenyl]amine), with a 6-fold interpenetrated structure is designed and synthesized based on the electron donor-acceptor strategy. CuI-TPPA has a large mobility-lifetime (μτ) product of 5.8 × 10-4 cm2 V-1 and a high detection sensitivity of 73.1 μC Gyair-1 cm-2, surpassing that of commercial α-Se detectors. Moreover, the detector remains fairly stable with only a 2% reduction in photocurrent under continuous bias irradiation conditions with a total dose of over 42.83 Gyair. The CuI-TPPA/poly(vinylidene fluoride) flexible composite X-ray detector films are successfully manufactured with different thicknesses. Through multifaceted assessments, the optimal thickness is found with a high detection sensitivity of up to 143.6 μC Gyair-1 cm-2. As proof-of-concept, 11 × 9 pixelated X-ray detectors are fabricated on the same composite film to realize X-ray direct imaging. This work opens up potential applications of MOFs in environmentally friendly and wearable devices for direct X-ray detection and imaging.
Collapse
Affiliation(s)
- Jiarong Mi
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qianwen Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Baoyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wenfei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shuaihua Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Fakun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Guocong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
14
|
Miah MH, Khandaker MU, Aminul Islam M, Nur-E-Alam M, Osman H, Ullah MH. Perovskite materials in X-ray detection and imaging: recent progress, challenges, and future prospects. RSC Adv 2024; 14:6656-6698. [PMID: 38390503 PMCID: PMC10883145 DOI: 10.1039/d4ra00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Perovskite materials have attracted significant attention as innovative and efficient X-ray detectors owing to their unique properties compared to traditional X-ray detectors. Herein, chronologically, we present an in-depth analysis of X-ray detection technologies employing organic-inorganic hybrids (OIHs), all-inorganic and lead-free perovskite material-based single crystals (SCs), thin/thick films and wafers. Particularly, this review systematically scrutinizes the advancement of the diverse synthesis methods, structural modifications, and device architectures exploited to enhance the radiation sensing performance. In addition, a critical analysis of the crucial factors affecting the performance of the devices is also provided. Our findings revealed that the improvement from single crystallization techniques dominated the film and wafer growth techniques. The probable reason for this is that SC-based devices display a lower trap density, higher resistivity, large carrier mobility and lifetime compared to film- and wafer-based devices. Ultimately, devices with SCs showed outstanding sensitivity and the lowest detectable dose rate (LDDR). These results are superior to some traditional X-ray detectors such as amorphous selenium and CZT. In addition, the limited performance of film-based devices is attributed to the defect formation in the bulk film, surfaces, and grain boundaries. However, wafer-based devices showed the worst performance because of the formation of voids, which impede the movement of charge carriers. We also observed that by performing structural modification, various research groups achieved high-performance devices together with stability. Finally, by fusing the findings from diverse research works, we provide a valuable resource for researchers in the field of X-ray detection, imaging and materials science. Ultimately, this review will serve as a roadmap for directing the difficulties associated with perovskite materials in X-ray detection and imaging, proposing insights into the recent status, challenges, and promising directions for future research.
Collapse
Affiliation(s)
- Md Helal Miah
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University Bandar Sunway 47500 Selangor Malaysia
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University Bandar Sunway 47500 Selangor Malaysia
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya Kuala Lumpur 50603 Selangor Malaysia
| | - Mohammad Nur-E-Alam
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN Kajang 43000 Selangor Malaysia
- School of Science, Edith Cowan University 270 Joondalup Drive Joondalup-6027 WA Australia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University 21944 Taif Saudi Arabia
| | - Md Habib Ullah
- Department of Physics, Faculty of Science and Technology, American International University-Bangladesh 408/1, Kuratoli, Khilkhet Dhaka 1229 Bangladesh
| |
Collapse
|
15
|
Li QW, Lassoued MS, Chen WP, Gou GY, Zheng YZ. Fine Tuning Ag(I)-Sb(III) Hybrid Iodides for Light Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5769-5778. [PMID: 38276961 DOI: 10.1021/acsami.3c14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Lead-free hybrid double perovskite iodides (HDPIs) have piqued increasing research interest due to their environmental friendliness and high stability. However, such antimony-based HDPIs with strong photocurrent response are currently very limited. Here, we successfully design and construct five Ag(I)-Sb(III)-based HDPIs using two types of cyclic aliphatic amines as A-site templates. Interestingly, these Ag(I)-Sb(III) HDPIs exhibit relatively narrow band gaps, preferred orientation, and high stability after being processed into thin films on the indium tin oxide (ITO) substrate. Notably, under illuminations of a xenon lamp, all HDPIs exhibit considerable photocurrent responses, reaching a maximum difference of 17 μA·cm-2 for ASI 1, which is the highest among lead-free halogen-based organic-inorganic hybrid compounds to date. Combining the considerable photocurrents and the high stability, the optoelectronic applications of two-dimensional Ag(I)-Sb(III) HDPIs can be expected.
Collapse
Affiliation(s)
- Qian-Wen Li
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Mohamed Saber Lassoued
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wei-Peng Chen
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Gao-Yang Gou
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
16
|
Liu C, Pan J, Yuan Q, Zhu C, Liu J, Ge F, Zhu J, Xie H, Zhou D, Zhang Z, Zhao P, Tian B, Huang W, Wang L. Highly Reliable Van Der Waals Memory Boosted by a Single 2D Charge Trap Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305580. [PMID: 37882079 DOI: 10.1002/adma.202305580] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Charge trap materials that can store carriers efficiently and controllably are desired for memory applications. 2D materials are promising for highly compacted and reliable memory mainly due to their ease of constructing atomically uniform interfaces, however, remain unexplored as being charge trap media. Here it is discovered that 2D semiconducting PbI2 is an excellent charge trap material for nonvolatile memory and artificial synapses. It is simple to construct PbI2 -based charge trap devices since no complicated synthesis or additional defect manufacturing are required. As a demonstration, MoS2 /PbI2 device exhibits a large memory window of 120 V, fast write speed of 5 µs, high on-off ratio around 106 , multilevel memory of over 8 distinct states, high reliability with endurance up to 104 cycles and retention over 1.2 × 104 s. It is envisioned that PbI2 with ionic activity caused by the natively formed iodine vacancies is unique to combine with unlimited 2D materials for versatile van der Waals devices with high-integration and multifunctionality.
Collapse
Affiliation(s)
- Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jie Pan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qihui Yuan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jianquan Liu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jijie Zhu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Haitao Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicheng Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), North-Western Polytechnical University (NPU), Xi'an, 710072, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangdong, 518107, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
17
|
Fan Y, Chen Q, Li Z, Zhu T, Wu J, You S, Zhang S, Luo J, Ji C. Realization of Passive X-Ray Detection with a Low Detection Limit in Dion-Jacobson Halide Hybrid Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303814. [PMID: 37415552 DOI: 10.1002/smll.202303814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/09/2023] [Indexed: 07/08/2023]
Abstract
Halide hybrid perovskites are a kind of intriguing contenders for X-ray detection, and their low detection limits (LoDs) have played a crucial part in X-ray safety inspection and medical examination. However, there is still a significant challenge in manufacturing perovskite X-ray detectors with low LoDs. Herein, attributed to the bulk photovoltaic effect (BPVE) of a Dion-Jacobson (DJ) type 2D halide hybrid perovskite polar structure (3-methylaminopropylamine)PbBr4 (1), self-powered X-ray detection with low detection limit is successfully realized. Specifically, the crystal-based detector of 1 exhibits a low dark current at zero bias, which reduces the noise current (0.34 pA), leading to a low detection limit (58.3 nGyair s-1 ) which is two orders of magnitude lower than that of under external voltage bias. The combination of BPVE and LoDs of halide hybrid perovskite provides an efficient strategy to achieve passive X-ray detection with low doses.
Collapse
Affiliation(s)
- Yipeng Fan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qin Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhou Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shihai You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
| | - Junhua Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
18
|
Qiu L, Wang M, Sun T, Lou Q, Chen T, Yang G, Qian W, Zhang Z, Yang S, Zhang M, Jin Y, Zhou H. An interfacial toughening strategy for high stability 2D/3D perovskite X-ray detectors with a carbon nanotube thin film electrode. NANOSCALE 2023; 15:14574-14583. [PMID: 37610065 DOI: 10.1039/d3nr02801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Single-crystalline metal halide perovskite materials hold great promise for developing next-generation low-dose X-ray detection. To bring this new technology into reality, it is important to improve the durability of perovksite detectors by suppressing the well-known corrosion and ion diffusion problems at the perovskite/electrode interface. For imaging application, it is also imperative to develop new assembling approaches to realise non-planar interconnection between thick perovskite crystals and thin-film transistor (TFT) backplanes. Herein, a flexible and mechanically robust carbon nanotube (CNT) film was proposed to replace noble metal electrodes. The proposed CNT film, whose binder contains a carboxyl group, can form solid contact with a phenethylamine-based two-dimensional (2D) perovskite via amide coupling, thus toughening the perovskite-electrode interface. The resulting CNT/2D-3D perovskite detector shows an applaudable low dark current, high sensitivity, a low dose detection limit and excellent stability, retaining 98% of its initial sensitivity after storage for three months. Moreover, the flexible CNT films are also beneficial for making non-planar interconnection between thick perovskite crystals and TFT backplanes. The proposed flexible CNT thin film electrode thus provides a facile route towards realising a low-dose, high-resolution and highly stable perovskite X-ray detector.
Collapse
Affiliation(s)
- Liwen Qiu
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Mingqiang Wang
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Tian Sun
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Qiang Lou
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Tong Chen
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Guoshen Yang
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Wei Qian
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zixuan Zhang
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Yufeng Jin
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Hang Zhou
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
19
|
Lou L, Wan L, Wang ZS. MOF-Assisted Annealing-Free Crystallization Technology of Perovskites toward Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37485954 DOI: 10.1021/acsami.3c07286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Although annealing is a commonly used crystallization method for perovskite films in perovskite solar cells (PSCs), the high thermal energy consumption and limitations on flexible devices hinder their further industrial application. We herein propose an annealing-free crystallization technology for perovskite films, assisted by the Zr-metal-organic framework (MOF) interface between SnO2 and the perovskite. It is found that the Zr-MOF interface can accelerate the formation of perovskite intermediates and promote their conversion into perovskite crystals even without annealing. The trap density thus decreases by about one fold, accompanied by significant increases in electron and hole mobilities, resulting in enhanced carrier extraction and suppressed charge recombination. Therefore, the Zr-MOF-based PSC attains a power convention efficiency (PCE) of 20.24%, 2.2 times that (9.26%) of the pristine PSC. Furthermore, the Zr-MOF interface layer can significantly improve the air and thermal stabilities of PSCs. The Zr-MOF-based PSC exhibits 93% of its initial PCE versus 52% for the pristine PSC after 1018 h of storage in air. Additionally, after 360 h of continuous heating at 65 °C, the Zr-MOF-based PSC retains 91% of its initial PCE against 44% for the pristine PSC.
Collapse
Affiliation(s)
- Lingyun Lou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Li Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhong-Sheng Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
20
|
Zhang X, Yu S, Meng X, Xiao S. A Review on Lead‐Free Perovskites for X‐Ray Detection and Imaging. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xin Zhang
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 06210 China
| | - Shouwu Yu
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 06210 China
| | - Xianguang Meng
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 06210 China
| | - Shujuan Xiao
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 06210 China
| |
Collapse
|