1
|
Gao KN, Sun Z, Su PY, Yuan MW, Xu JS, Kong QY, Bai F, Zhang T. In Situ Formed Lithiated Iron Chloride Nanoanchors for Reinforcing Cathode/Electrolyte Interfaces in All-Solid-State Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500597. [PMID: 40211648 DOI: 10.1002/smll.202500597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/24/2025] [Indexed: 05/27/2025]
Abstract
A critical challenge for chloride-based all-solid-state batteries (ASSBs) is the limited lithium-ion transport at the cathode/electrolyte interface, driven by stress-induced cracks from cathode material volume changes, poor spatial distribution of active materials and solid electrolyte (SE) particles, and low stack pressure. In this study, an innovative design of island-like nanoanchors on the high-nickel cathode (NCM) surface is proposed to mechanically suppress the interfacial crack formation and propagation and electrochemically enhance Li+ transport. These nanoanchors, formed via in situ lithiation of iron chloride (LFC), possess a low elastic modulus, Li+ conductivity, and electrochemical activity and are prepared using a simple physical vapor deposition method. The multifunctional LFC nanoanchors not only improve SE coverage on the NCM surface from mixing to pressing but also maintain stable physical contact throughout cycling, thereby reinforcing lithium-ion transport and lithiation-delithiation interactions at the NCM/SE interface. As a result, the LFC-coated NCM (F@NCM)-based battery demonstrates excellent rate performance and capacity retention (90.2% after 200 cycles) under low stack pressure (≈5 MPa). This scalable and practical strategy provides a promising solution for optimizing cathode interfaces, marking a significant advancement in the development of high-performance ASSBs.
Collapse
Affiliation(s)
- Kang-Ning Gao
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Sun
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Pei-Yuan Su
- Center for Advanced Materials Research and and Faculty of Arts and Sciences, Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Meng-Wei Yuan
- Center for Advanced Materials Research and and Faculty of Arts and Sciences, Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Jing-Shen Xu
- Center for Advanced Materials Research and and Faculty of Arts and Sciences, Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Qing-Yu Kong
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Fan Bai
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| |
Collapse
|
2
|
Yu T, Liu Y, Li H, Sun Y, Guo S, Zhou H. Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries. Chem Rev 2025; 125:3595-3662. [PMID: 39932822 DOI: 10.1021/acs.chemrev.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Solid electrolytes, as the core of all-solid-state batteries (ASSBs), play a crucial role in determining the kinetics of ion transport and the interface compatibility with cathodes and anodes, which can be subdivided into catholytes, bulk electrolytes, and anolytes based on their functional characteristics. Among various inorganic solid electrolytes, ductile solid electrolytes, distinguished from rigid oxide electrolytes, exhibit excellent ion transport properties even under cold pressing, thus holding greater promise for industrialization. However, the challenge lies in finding a ductile solid electrolyte that can simultaneously serve as catholyte, bulk electrolyte, and anolyte. Fortunately, due to the immobility of solid electrolytes, combining multiple types of solid electrolytes allows for leveraging their respective advantages. In this review, we discuss five types of solid electrolytes, sulfides, halides, nitrides, antiperovskite-type, and complex hydrides, and the challenges and superiorities for these electrolytes are also addressed. The impact of pressure on ASSBs has been systematically discussed. Furthermore, the suitability of electrolytes as the catholyte, bulk electrolyte, and anolyte is discussed based on their functional characteristics and physicochemical properties. This discussion aims to deepen our understanding of solid electrolytes, enabling us to harness the advantages of various types of solid electrolytes and develop practical, high-performance ASSBs.
Collapse
Affiliation(s)
- Tao Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Center for Energy Storage Materials and Technologies, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Yuankai Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Center for Energy Storage Materials and Technologies, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Center for Energy Storage Materials and Technologies, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Yu Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Center for Energy Storage Materials and Technologies, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Center for Energy Storage Materials and Technologies, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Center for Energy Storage Materials and Technologies, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Wang M, Xu Z, He C, Cai L, Zheng H, Sun Z, Liu HK, Ying H, Dou S. Fundamentals, Advances and Perspectives in Designing Eutectic Electrolytes for Zinc-Ion Secondary Batteries. ACS NANO 2025; 19:9709-9739. [PMID: 40051121 DOI: 10.1021/acsnano.4c18422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Zinc-ion secondary batteries have been competitive candidates since the "post-lithium-ion" era for grid-scale energy storage, owing to their plausible security, high theoretical capacity, plentiful resources, and environment friendliness. However, many encumbrances like notorious parasitic reactions and Zn dendrite growth hinder the development of zinc-ion secondary batteries remarkably. Faced with these challenges, eutectic electrolytes have aroused notable attention by virtue of feasible synthesis and high tunability. This review discusses the definition and advanced functionalities of eutectic electrolytes in detail and divides them into nonaqueous, aqueous, and solid-state eutectic electrolytes with regard to the state and component of electrolytes. In particular, the corresponding chemistry concerning solvation structure regulation, electric double layer (EDL) structure, solid-electrolyte interface (SEI) and charge/ion transport mechanism is systematically elucidated for a deeper understanding of eutectic electrolytes. Moreover, the remaining limitations and further development of eutectic electrolytes are discussed for advanced electrolyte design and extended applications.
Collapse
Affiliation(s)
- Mengya Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zuojie Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Chaowei He
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Lucheng Cai
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Haonan Zheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Li C, Du Y. Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte. ACS NANO 2025; 19:4121-4155. [PMID: 39836953 DOI: 10.1021/acsnano.4c15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid. In this Review, we categorize and summarize the current research status of halide SSEs based on different halogen anions from the perspective of halogen chemistry, upon which we summarize the different synthetic routes of halide SSEs possessing high room-temperature ionic conductivity, and compare in detail the performance of halide SSEs based on different halogen anions in terms of ionic conductivity, activation energy, electronic conductivity, interfacial contact stability, and electrochemical window and summarize the corresponding optimization strategies for each of the above-mentioned electrochemical indicators. Finally, we provide an outlook on the unresolved challenges and future opportunities of ASSLBs.
Collapse
Affiliation(s)
- Chao Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Ogbolu BO, Poudel TP, Dikella TNDD, Truong E, Chen Y, Hou D, Li T, Liu Y, Gabriel E, Xiong H, Huang C, Hu Y. Tailoring Ion Transport in Li 3-3yHo 1+yCl 6-xBr x via Transition-Metal Free Structural Planes and Charge Carrier Distribution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409668. [PMID: 39690877 PMCID: PMC11831455 DOI: 10.1002/advs.202409668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Indexed: 12/19/2024]
Abstract
Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li+ mobility. In this study, Li+ transport in structurally modified Li3HoCl6, via Br- introduction and Li+ deficiency, is explored. The optimized Li3-3 yHo1+ yCl6- xBrx achieves an ionic conductivity of 3.8 mS cm-1 at 25 °C, the highest reported for holmium halide materials. 6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+ motional rate neighboring 116 MHz. X-ray diffraction analyses reveal mixed-anion-induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho-free planes with favorable energetics for Li+ migration. Bond valence site energy analysis highlights preferred Li+ transport pathways, particularly in structural planes devoid of Ho3+ blocking effects. Molecular dynamics simulations corroborate enhanced Li+ diffusion with Br- introduction into Li3HoCl6. Li-Ho electrostatic repulsions in the (001) plane presumably drive Li+ diffusion into the Ho-free (002) layer, enabling rapid intraplanar Li+ motion and exchange between the 2d and 4h sites. Li3-3 yHo1+ yCl6- xBrx also demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high-performance fast ion conductors for all-solid-state batteries.
Collapse
Affiliation(s)
- Bright O. Ogbolu
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
| | - Tej P. Poudel
- Materials Science and Engineering ProgramFlorida State UniversityTallahasseeFL32310USA
| | | | - Erica Truong
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
| | - Yudan Chen
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
| | - Dewen Hou
- Micron School of Materials Science and EngineeringBoise State UniversityBoiseID83725USA
- Center for Nanoscale MaterialsArgonne National LaboratoryArgonneIL60439USA
| | - Tianyi Li
- X‐Ray Science DivisionArgonne National LaboratoryArgonneIL60439USA
| | - Yuzi Liu
- Center for Nanoscale MaterialsArgonne National LaboratoryArgonneIL60439USA
| | - Eric Gabriel
- Micron School of Materials Science and EngineeringBoise State UniversityBoiseID83725USA
| | - Hui Xiong
- Micron School of Materials Science and EngineeringBoise State UniversityBoiseID83725USA
| | - Chen Huang
- Department of Scientific ComputingFlorida State UniversityTallahasseeFL32306USA
| | - Yan‐Yan Hu
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
- Materials Science and Engineering ProgramFlorida State UniversityTallahasseeFL32310USA
- Center of Interdisciplinary Magnetic ResonanceNational High Magnetic Field LaboratoryTallahasseeFL32310USA
| |
Collapse
|
6
|
Nie X, Lei M, Hu J, Li C. Boosting Li-Ion Conductivity of Fluoride Solid Electrolyte by Low-Temperature Molten Salt Ablation and Particle Boundary Doping. ACS NANO 2024; 18:30099-30112. [PMID: 39401128 DOI: 10.1021/acsnano.4c12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Halide solid electrolytes (SEs) are attracting great attention, owing to their high ionic conductivity and excellent high-voltage compatibility. However, severe moisture sensitivity, poor thermal stability, and instability at the lithium metal anode interface with chloride and bromide SEs retard their applications in solid-state lithium metal batteries. Fluoride SEs are expected to solve these problems, but they are now plagued by inadequate room-temperature (RT) ionic conductivity. Herein, a low-temperature molten salt (LiCl+1.33AlCl3) ablation method is proposed to enhance the ionic conductivity of monoclinic Li3GaF6 by particle boundary doping. The RT ionic conductivity of Li3GaF6 is correspondingly increased by 2 orders of magnitude, and the conductivity reaches 10-4 S cm-1 at 60 °C. The improved ionic conductivity benefits from the enhancement of interfacial ion transport, with the formation of more conductive chlorine-doped Li3GaF6-xClx and in situ binder LiAlCl4 to cement surrounding nanoparticles. The as-synthesized Li3GaF6 demonstrates outstanding humidity tolerance without conductivity degradation after exposure to a relative humidity of up to 35%. It also exhibits the widest electrochemical stability window experimentally (close to 6 V) compared with other state-of-the-art SEs. The solid-state Li/Li3GaF6/LiFePO4 cell with a stable Li+-conductive polymer interface is successfully driven for at least 200 cycles at 0.5C. Our study provides a solution to various chemical and electrochemical stability issues encountered by the halide SE family.
Collapse
Affiliation(s)
- Xianhui Nie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Meng Lei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Jiulin Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Chilin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| |
Collapse
|
7
|
Zhao L, Xu A, Cheng Y, Xu H, Xu L, Mai L. A Highly Stable and Non-Flammable Deep Eutectic Electrolyte for High-Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202411224. [PMID: 39058557 DOI: 10.1002/anie.202411224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Deep eutectic electrolytes (DEEs) are regarded as one of the next-generation electrolytes to promote the development of lithium metal batteries (LMBs) due to their unparalleled advantages compared to both liquid electrolytes and solid electrolytes. However, its application in LMBs is limited by electrode interface compatibility. Here, we introduce a novel solid dimethylmalononitrile (DMMN)-based DEE induced by N coordination to dissociate LiTFSI. We confirmed that the DMMN molecule can promote the dissociation of LiTFSI by the interaction between the N atom and Li+, and form the hydrogen bond with TFSI- anion, which can promote the dissociation of LiTFSI to form DEE. More importantly, due to the absence of active α-hydrogen, DMMN exhibits greatly enhanced reduction stability with Li metal, resulting in favorable electrode/electrolyte interface compatibility. Polymer electrolytes based on this DEE exhibit high ionic conductivity (0.67 mS cm-1 at 25 °C), high oxidation voltage (5.0 V vs. Li+/Li), favorable interfacial stability, and nonflammability. Li‖LFP and Li‖NCM811 full batteries utilizing this DEE polymer electrolyte exhibit excellent long-term cycling stability and excellent rate performance at high rates. Therefore, the new DMMN-based DEE overcomes the limitations of traditional electrolytes in electrode interface compatibility and opens new possibilities for improving the performance of LMBs.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Ao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Yu Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Hantao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, P.R. China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, P.R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, P.R. China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, P.R. China
| |
Collapse
|
8
|
Yu Q, Hu J, Nie X, Zeng Y, Li C. Liquid Metal Mediated Heterostructure Fluoride Solid Electrolytes of High Conductivity and Air Stability for Sustainable Na Metal Batteries. ACS NANO 2024. [PMID: 38319748 DOI: 10.1021/acsnano.3c12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Fluoride-based solid electrolytes (SEs) have emerged as a promising component for high-energy-density rechargeable solid-state batteries (SSBs) in view of their wide electrochemical window, high air stability, and interface compatibility, but they still face the challenge of low ion conductivity and the lack of a desired structure for sodium metal SSBs. Here, we report a sodium-rich heterostructure fluoride SE, Na3GaF6-Ga2O3-NaCl (NGFOC-G), synthesized via in situ oxidation of liquid metal gallium and in situ chlorination using low-melting GaCl3. The distinctive features of NGFOC-G include single-crystal Na3GaF6 domains within an open-framework structure, composite interface decoration of Ga2O3 and NaCl with a concentration gradient, exceptional air stability, and high electrochemical oxidation stability. By leveraging the penetration of gallium at NaF grain boundaries and the in situ self-oxidation to form Ga2O3 nanodomains, the solid-phase reaction kinetics of NaF and GaF3 is activated for facilitating the synthesis of main component Na3GaF6. The introduction of a small amount of a chlorine source during synthesis further softens and modifies the boundaries of Na3GaF6 along with Ga2O3. Benefiting from the enhanced interface ion transport, the optimized NGFOC-G exhibits an ionic conductivity up to 10-4 S/cm at 40 °C, which is the highest level reported among fluoride-based sodium-ion SEs. This SE demonstrates a "self-protection" mechanism, where the formation of a high Young's modulus transition layer rich in NaF and Na2O under electrochemical driving prevents the dendrite growth of sodium metal. The corresponding Na/Na symmetric cells show minimal voltage hysteresis and stable cycling performance for at least 1000 h. The Na/NGFOC-G/Na3V2(PO4)3 cell demonstrates stable capacity release around 100 mAh/g at room temperature. The Na/NGFOC-G/FeF3 cell delivers a high capacity of 461 mAh/g with an excellent stability of conversion reaction cycling.
Collapse
Affiliation(s)
- Qijie Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Jiulin Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Xianhui Nie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Yuhan Zeng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Chilin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| |
Collapse
|
9
|
Li F, Cheng X, Lu G, Yin YC, Wu YC, Pan R, Luo JD, Huang F, Feng LZ, Lu LL, Ma T, Zheng L, Jiao S, Cao R, Liu ZP, Zhou H, Tao X, Shang C, Yao HB. Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. J Am Chem Soc 2023; 145:27774-27787. [PMID: 38079498 DOI: 10.1021/jacs.3c10602] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Solid electrolytes (SEs) are central components that enable high-performance, all-solid-state lithium batteries (ASSLBs). Amorphous SEs hold great potential for ASSLBs because their grain-boundary-free characteristics facilitate intact solid-solid contact and uniform Li-ion conduction for high-performance cathodes. However, amorphous oxide SEs with limited ionic conductivities and glassy sulfide SEs with narrow electrochemical windows cannot sustain high-nickel cathodes. Herein, we report a class of amorphous Li-Ta-Cl-based chloride SEs possessing high Li-ion conductivity (up to 7.16 mS cm-1) and low Young's modulus (approximately 3 GPa) to enable excellent Li-ion conduction and intact physical contact among rigid components in ASSLBs. We reveal that the amorphous Li-Ta-Cl matrix is composed of LiCl43-, LiCl54-, LiCl65- polyhedra, and TaCl6- octahedra via machine-learning simulation, solid-state 7Li nuclear magnetic resonance, and X-ray absorption analysis. Attractively, our amorphous chloride SEs exhibit excellent compatibility with high-nickel cathodes. We demonstrate that ASSLBs comprising amorphous chloride SEs and high-nickel single-crystal cathodes (LiNi0.88Co0.07Mn0.05O2) exhibit ∼99% capacity retention after 800 cycles at ∼3 C under 1 mA h cm-2 and ∼80% capacity retention after 75 cycles at 0.2 C under a high areal capacity of 5 mA h cm-2. Most importantly, a stable operation of up to 9800 cycles with a capacity retention of ∼77% at a high rate of 3.4 C can be achieved in a freezing environment of -10 °C. Our amorphous chloride SEs will pave the way to realize high-performance high-nickel cathodes for high-energy-density ASSLBs.
Collapse
Affiliation(s)
- Feng Li
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaobin Cheng
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yi-Chen Yin
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ye-Chao Wu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- Hefei Gotion High-tech Power Energy Co., Ltd., Hefei 230012, Anhui, China
| | - Ruijun Pan
- Hefei Gotion High-tech Power Energy Co., Ltd., Hefei 230012, Anhui, China
| | - Jin-Da Luo
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Fanyang Huang
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Li-Zhe Feng
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lei-Lei Lu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Tao Ma
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lirong Zheng
- Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhong Jiao
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ruiguo Cao
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Hongmin Zhou
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Hong-Bin Yao
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
10
|
Gupta S, Yang X, Ceder G. What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture. Nat Commun 2023; 14:6884. [PMID: 37898616 PMCID: PMC10613223 DOI: 10.1038/s41467-023-42538-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Soft clay-like Li-superionic conductors, integral to realizing all-solid-state batteries, have been recently synthesized by mixing rigid-salts. Here, through computational and experimental analysis, we clarify how a soft clay-like material can be created from a mixture of rigid-salts. Using molecular dynamics simulations with a deep learning-based interatomic potential energy model, we uncover the microscopic features responsible for soft clay-formation from ionic solid mixtures. We find that salt mixtures capable of forming molecular solid units on anion exchange, along with the slow kinetics of such reactions, are key to soft-clay formation. Molecular solid units serve as sites for shear transformation zones, and their inherent softness enables plasticity at low stress. Extended X-ray absorption fine structure spectroscopy confirms the formation of molecular solid units. A general strategy for creating soft clay-like materials from ionic solid mixtures is formulated.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiaochen Yang
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gerbrand Ceder
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|