1
|
Mizzi L, Dudek KK, Frassineti A, Spaggiari A, Ulliac G, Kadic M. Lightweight 3D Hierarchical Metamaterial Microlattices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410293. [PMID: 40317710 DOI: 10.1002/advs.202410293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Hierarchical auxetic metamaterials are a class of materials which are characterized by a multi-tiered architecture and have the capability of exhibiting enhanced mechanical properties in comparison to their single-geometry counterparts. In this work, three distinct new classes of hierarchical auxetic metamaterials designed by incorporating cubic crystal lattice geometries, namely, Body-Centred Cubic (BCC), Face-Centred Cubic (FCC) and Tetrahedral Cubic (TC) are proposed into 3D rotating cube structures. Through the introduction of hierarchy, these relatively dense mechanical metamaterials are rendered lightweight, through a volume fraction reduction of over 90% in the majority of cases from their full-block (FB) counterparts, while retaining their original auxetic capabilities. These systems are also demonstrated to possess the ability to exhibit a wide range of stiffnesses and Poisson's ratios, including giant negative values, as well as superior stiffness/density ratios making them ideal for implementation in lightweight applications. Furthermore, a two-photon lithography 3D-printer is used to fabricate these new lattice structures at the microscale and test them in-situ. The results obtained provide clear and comprehensive evidence of the improvement imparted through the introduction of hierarchy and the advantages of using this method to design lightweight 3D rotating unit auxetic structures.
Collapse
Affiliation(s)
- Luke Mizzi
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia, 42121, Italy
| | - Krzysztof K Dudek
- Institute of Physics, University of Zielona Gora, ul. Szafrana 4a, Zielona Gora, 65-069, Poland
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, 25030, France
| | - Andrea Frassineti
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia, 42121, Italy
| | - Andrea Spaggiari
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia, 42121, Italy
| | - Gwenn Ulliac
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, 25030, France
| | - Muamer Kadic
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, 25030, France
| |
Collapse
|
2
|
Ma WWS, Yang H, Zhao Y, Li X, Ding J, Qu S, Liu Q, Hu Z, Li R, Tao Q, Mo H, Zhai W, Song X. Multi-Physical Lattice Metamaterials Enabled by Additive Manufacturing: Design Principles, Interaction Mechanisms, and Multifunctional Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405835. [PMID: 39834122 PMCID: PMC11848643 DOI: 10.1002/advs.202405835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/21/2024] [Indexed: 01/22/2025]
Abstract
Lattice metamaterials emerge as advanced architected materials with superior physical properties and significant potential for lightweight applications. Recent developments in additive manufacturing (AM) techniques facilitate the manufacturing of lattice metamaterials with intricate microarchitectures and promote their applications in multi-physical scenarios. Previous reviews on lattice metamaterials have largely focused on a specific/single physical field, with limited discussion on their multi-physical properties, interaction mechanisms, and multifunctional applications. Accordingly, this article critically reviews the design principles, structure-mechanism-property relationships, interaction mechanisms, and multifunctional applications of multi-physical lattice metamaterials enabled by AM techniques. First, lattice metamaterials are categorized into homogeneous lattices, inhomogeneous lattices, and other forms, whose design principles and AM processes are critically discussed, including the benefits and drawbacks of different AM techniques for fabricating different types of lattices. Subsequently, the structure-mechanism-property relationships and interaction mechanisms of lattice metamaterials in a range of physical fields, including mechanical, acoustic, electromagnetic/optical, and thermal disciplines, are summarized to reveal critical design principles. Moreover, the multifunctional applications of lattice metamaterials, such as sound absorbers, insulators, and manipulators, sensors, actuators, and soft robots, thermal management, invisible cloaks, and biomedical implants, are enumerated. These design principles and structure-mechanism-property relationships provide effective design guidelines for lattice metamaterials in multifunctional applications.
Collapse
Affiliation(s)
- Winston Wai Shing Ma
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Hang Yang
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Yijing Zhao
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Xinwei Li
- Faculty of Science, Agriculture, and EngineeringNewcastle UniversitySingapore567739Singapore
| | - Junhao Ding
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Shuo Qu
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Quyang Liu
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Zongxin Hu
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Rui Li
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Quanqing Tao
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Haoming Mo
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Wei Zhai
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Xu Song
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| |
Collapse
|
3
|
Xie Q, Han L, Liu J, Zhang W, Zhao L, Liu Y, Chen Y, Li Y, Zhou Q, Dong Y, Wang X. Kirigami-Inspired Stretchable Piezoelectret Sensor for Analysis and Assessment of Parkinson's Tremor. Adv Healthc Mater 2025; 14:e2402010. [PMID: 39578241 DOI: 10.1002/adhm.202402010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Indexed: 11/24/2024]
Abstract
Human muscle activity contains rich information that can reflect human movement patterns and conditions of diseases or physical abnormalities. Flexible pressure sensors enable the assessment of muscle tremors in Parkinson's disease (PD) through Force Myography (FMG). Here, an easily fabricated, ultra-sensitive, and stretchable piezoelectret pressure sensor is presented. Utilizing an effective integration of Kirigami structure and piezoelectret air gap, the sensor achieved a dynamic sensitivity of ≈725 pC/N (@5 Hz), measurement repeatability of <2.5%, measurement hysteresis of <1%, a pressure detection limit of <15 Pa, a response time of ≈2.5 ms, stable output within ±3% over 40 000 cycles, and output decay of <2.5% after 1000 cycles of complex deformation, meeting non-distorted measurement conditions up to 20 Hz. Successful monitoring and assessment of hand muscle tremors are demonstrated. Furthermore, using a 1×3 sensor array enabled tremor localization, achieving a high accuracy rate of 99.5% with machine learning algorithms. Additionally, the sensor facilitated the experimental quantification and assisted scoring of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), with an accuracy of ≈85%. The sensor demonstrates potential for assisting in the diagnosis and rehabilitation monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Qisen Xie
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liuyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jie Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wenjie Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liuyan Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuhan Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanru Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuzhen Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ying Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaohao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Gu Y, Wei Z, Wei G, You Z, Ma J, Chen Y. Kirigami-Inspired Three-Dimensional Metamaterials with Programmable Isotropic and Orthotropic Thermal Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411232. [PMID: 39436075 DOI: 10.1002/adma.202411232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Mechanical metamaterials with specifically designed cells can provide unusual thermal expansion properties for diverse applications. Limited by very few available cell topologies and complicated non-linear structural deformation, most existing thermal expansion metamaterials can only achieve orthogonally isotropic negative/zero/positive thermal expansion (NTE/ZTE/PTE) within a mild range, especially the 3D ones. Here, based on one-degree-of-freedom kirigami polyhedrons proposed with a kinematic design strategy, a family of 3D isotropic and orthotropic metamaterials capable of programmable NTE, PTE, and even ZTE over ultra-wide range is developed. Incorporating bi-material strips as creases for isotropic polyhedrons, NTE and PTE metamaterials with coefficients of thermal expansion (CTEs) ranging from -2354.3 to 3006.7 ppm/°C are designed and programmed by the theoretical model. Meanwhile, isotropic ZTE metamaterials are constructed by either homogeneous tessellation of ZTE cells or hybrid tessellation of NTE and PTE cells. Furthermore, by allowing distinct geometric parameters in the three orthogonal directions of the kirigami polyhedrons while preserving the kinematic motion, orthotropic metamaterials, in which each of the three directions can be assigned with an independently programmed NTE, ZTE, or PTE, are also achieved. This study paves a novel pathway for the development of thermal expansion metamaterials with potential applications for space optical systems, MEMS, and so on.
Collapse
Affiliation(s)
- Yuanqing Gu
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhibo Wei
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Guowu Wei
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Zhong You
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jiayao Ma
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300350, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Dang X, Gonella S, Paulino GH. Folding a single high-genus surface into a repertoire of metamaterial functionalities. Proc Natl Acad Sci U S A 2024; 121:e2413370121. [PMID: 39514303 PMCID: PMC11573573 DOI: 10.1073/pnas.2413370121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
The concepts of origami and kirigami have often been presented separately. Here, we put forth a synergistic approach-the folded kirigami-in which kirigami assemblies are complemented by means of folding, typical of origami patterns. Besides the emerging patterns themselves, the synergistic approach also leads to topological mechanical metamaterials. While kirigami metamaterials have been fabricated by various methods, such as 3D printing, cutting, casting, and assemblage of building blocks, the "folded kirigami" claim their distinctive properties from the universal folding protocols. For a target kirigami pattern, we design an extended high-genus pattern with appropriate sets of creases and cuts, and proceed to fold it sequentially to yield the cellular structure of a 2D lattice endowed with finite out-of-plane thickness. The strategy combines two features that are generally mutually exclusive in canonical methods: fabrication involving a single piece of material and realization of nearly ideal intercell hinges. We test the approach against a diverse portfolio of triangular and quadrilateral kirigami configurations. We demonstrate a plethora of emerging metamaterial functionalities, including topological phase-switching reconfigurability between polarized and nonpolarized states in kagome kirigami, and availability of nonreciprocal mechanical response in square-rhombus kirigami.
Collapse
Affiliation(s)
- Xiangxin Dang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
| | - Stefano Gonella
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, MN55455
| | - Glaucio H. Paulino
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
6
|
Li Y, Zhou C, Yin J. Geometric mechanics of kiri-origami-based bifurcated mechanical metamaterials. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20240010. [PMID: 39370801 PMCID: PMC11456820 DOI: 10.1098/rsta.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 10/08/2024]
Abstract
We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations. We analytically investigate their reconfiguration kinematics and predict the occurrence and locations of kinematic bifurcations through a trial-correction modelling method. These building blocks are tessellated in 3D to create various 3D bifurcated hierarchical mechanical metamaterials that preserve the kinematic bifurcations in their building blocks to reconfigure into different 3D architectures. By combining the kinematics and considering the elastic torsional energy stored in the folds, we develop the geometric mechanics to predict their tunable anisotropic Poisson's ratios and stiffnesses. We find that kinematic bifurcation can significantly effect mechanical responses, including changing the sign of Poisson's ratios from negative to positive beyond bifurcation, tuning the anisotropy, and overcoming the polarity of structural stiffness and enhancing the number of deformation paths with more reconfigured shapes.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
Collapse
Affiliation(s)
- Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27606, USA
| | - Caizhi Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27606, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27606, USA
| |
Collapse
|
7
|
Li Y, Di Lallo A, Zhu J, Chi Y, Su H, Yin J. Adaptive hierarchical origami-based metastructures. Nat Commun 2024; 15:6247. [PMID: 39060239 PMCID: PMC11282231 DOI: 10.1038/s41467-024-50497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism. Taking inspiration from thick origami and hierarchies in nature, we present a hierarchical construction method based on polyhedrons to create an extensive library of compact origami metastructures. We show that a single hierarchical origami structure can autonomously adapt to over 103 versatile architectural configurations, achieved with the utilization of fewer than 3 actuation degrees of freedom and employing simple transition kinematics. We uncover the fundamental principles governing theses shape transformation through theoretical models. Furthermore, we also demonstrate the wide-ranging potential applications of these transformable hierarchical structures. These include their uses as untethered and autonomous robotic transformers capable of various gait-shifting and multidirectional locomotion, as well as rapidly self-deployable and self-reconfigurable architecture, exemplifying its scalability up to the meter scale. Lastly, we introduce the concept of multitask reconfigurable and deployable space robots and habitats, showcasing the adaptability and versatility of these metastructures.
Collapse
Affiliation(s)
- Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Antonio Di Lallo
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Junxi Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yinding Chi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
- Lab of Biomechatronics and Intelligent Robotics, Joint NCSU/UNC Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA.
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
8
|
Liu J, Huang L, Guo H, Liu H, Lu T. Hybrid-Microstructure-Based Soft Network Materials with Independent Tunability of Mechanical Properties over Large Deformations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32411-32424. [PMID: 38865596 DOI: 10.1021/acsami.4c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Introducing auxetic metamaterials into stretchable electronics shows promising prospects for enhancing the performance and innovating the functionalities of various devices, such as stretchable strain sensors. Nevertheless, most existing auxetics fail to meet the requirement of stretchable electronics, which typically include high mechanical flexibility and stable Poisson's ratio over large deformations. Moreover, despite being highly advantageous for application in diverse load-bearing conditions, achieving tunability of J-shaped stress-strain response independent of negative Poisson's ratio remains a significant challenge. This paper introduces a class of hybrid-microstructure-based soft network materials (HMSNMs) consisting of different types of microstructures along the loading and transverse directions. The J-shaped stress-strain curve and nonlinear Poisson's ratio for HMSNMs can be tuned independently of each other. The HMSNM provides much higher strength than the corresponding existing metamaterial while offering a nearly stable negative Poisson's ratio over large strains. Both mechanical properties under infinitesimal and large deformations can be well-tuned by geometric parameters. Fascinating functionalities such as shape programming and stress regulation are achieved by integrating a set of HMSNMs in series/parallel configurations. A stretchable LED-integrated display capable of displaying dynamic images without distortion under uniaxial stretching serves as a demonstrative application.
Collapse
Affiliation(s)
- Jianxing Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Linwei Huang
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haoyu Guo
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiyang Liu
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Tongqing Lu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Jin L, Yang S. Engineering Kirigami Frameworks Toward Real-World Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308560. [PMID: 37983878 DOI: 10.1002/adma.202308560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Shi P, Chen Y, Feng J, Sareh P. Highly stretchable graphene kirigami with tunable mechanical properties. Phys Rev E 2024; 109:035002. [PMID: 38632728 DOI: 10.1103/physreve.109.035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024]
Abstract
In recent years, kirigami techniques have inspired the design of graphene-based nanodevices with exceptional stretchability and ductility. Based on an I-shaped cutting pattern, here we propose a graphene kirigami that exhibits remarkable stretchability and ductility in two independent planar directions along with negative Poisson's ratios. The deformation mechanism underlying the high stretchability of the structure is the flipping and rotation of its cutting ligaments during elongation. Molecular dynamics simulations show that the yield and fracture strains of graphene kirigami can be enhanced by factors of 6 and 10 in the two planar directions. In addition, the mechanical properties of the graphene kirigami can be tuned by altering the cutting geometric parameters as well as incorporating distinct cutting patterns in series. We develop a numerical algorithm to predict the stress-strain response of the series-connected graphene kirigami, and verify its accuracy using appropriate simulations. On this basis, the stress-strain response of the series-connected graphene kirigami can be tuned by altering its geometric parameters and the number of building blocks. This graphene kirigami could be applied to the design and development of next-generation flexible electronics such as stretchable electrodes and strain sensors.
Collapse
Affiliation(s)
- Pan Shi
- Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education and National Prestress Engineering Research Center, Southeast University, Nanjing 211189, China
| | - Yao Chen
- Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education and National Prestress Engineering Research Center, Southeast University, Nanjing 211189, China
- School of Civil Engineering, Southeast University, Wuxi Campus, Wuxi 214082, China
| | - Jian Feng
- Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education and National Prestress Engineering Research Center, Southeast University, Nanjing 211189, China
| | - Pooya Sareh
- Creative Design Engineering Lab (Cdel), School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid (UPM), Madrid 28012, Spain
| |
Collapse
|
11
|
Qiao C, Agnelli F, Pokkalla DK, D'Ambrosio N, Pasini D. Anisotropic Morphing in Bistable Kirigami through Symmetry Breaking and Geometric Frustration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313198. [PMID: 38413013 DOI: 10.1002/adma.202313198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Shape morphing in bistable kirigami enables remarkable functionalities appealing to a diverse range of applications across the spectrum of length scale. At the core of their shape shifting lies the architecture of their repeating unit, where highly deformable slits and quasi-rigid rotating units often exhibit multiple symmetries that confer isotropic deployment obeying uniform scaling transformation. In this work, symmetry breaking in bistable kirigami is investigated to access geometric frustration and anisotropic morphing, enabling arbitrarily scaled deployment in planar and spatial bistable domains. With an analysis on their symmetry properties complemented by a systematic investigation integrating semi-analytical derivations, numerical simulations, and experiments on elastic kirigami sheets, this work unveils the fundamental relations between slit symmetry, geometric frustration, and anisotropic bistable deployment. Furthermore, asymmetric kirigami units are leveraged in planar and flat-to-3D demonstrations to showcase the pivotal role of shear deformation in achieving target shapes and functions so far unattainable with uniformly stretchable kirigami. The insights provided in this work unveil the role of slit symmetry breaking in controlling the anisotropic bistable deployment of soft kirigami metamaterials, enriching the range of achievable functionalities for applications spanning deployable space structures, wearable technologies, and soft machines.
Collapse
Affiliation(s)
- Chuan Qiao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Filippo Agnelli
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Deepak Kumar Pokkalla
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Nicholas D'Ambrosio
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada
| |
Collapse
|
12
|
Wang L, Chang Y, Wu S, Zhao RR, Chen W. Physics-aware differentiable design of magnetically actuated kirigami for shape morphing. Nat Commun 2023; 14:8516. [PMID: 38129420 PMCID: PMC10739944 DOI: 10.1038/s41467-023-44303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
13
|
Kwak JY, Jeong JY, Kwon YP, Seo DH, Kang CM, Kim DH, Han JS, Gwak EJ, Choi DS, Kim JY, Je TJ, Jeon EC. Manufacturing of stretchable substrate with biaxial strain control for highly-efficient stretchable solar cells and displays. Sci Rep 2023; 13:20460. [PMID: 37993479 PMCID: PMC10665548 DOI: 10.1038/s41598-023-47569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
There has been significant research focused on the development of stretchable materials that can provide a large area with minimal material usage for use in solar cells and displays. However, most materials exhibit perpendicular shrinkage when stretched, which is particularly problematic for polymer-based substrates commonly used in stretchable devices. To address this issue, biaxial strain-controlled substrates have been proposed as a solution to increase device efficiency and conserve material resources. In this study, we present the design and fabrication of a biaxial strain-controlled substrate with a re-entrant honeycomb structure and a negative Poisson's ratio. Using a precisely machined mold with a shape error of less than 0.15%, we successfully fabricated polydimethylsiloxane substrates with a 500 μm thick re-entrant honeycomb structure, resulting in a 19.1% reduction in perpendicular shrinkage. This improvement translates to a potential increase in device efficiency by 9.44% and an 8.60% reduction in material usage for substrate fabrication. We demonstrate that this design and manufacturing method can be applied to the fabrication of efficient stretchable devices, such as solar cells and displays.
Collapse
Affiliation(s)
- Ji-Youn Kwak
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Young Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea
- Department of Nano-Mechatronics Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ye-Pil Kwon
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dong-Hyun Seo
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea
- Department of Nano-Mechatronics Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chung-Mo Kang
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea
| | - Dong-Hyeon Kim
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jun Sae Han
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea
- Department of Nano-Mechatronics Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Eun-Ji Gwak
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea
| | - Doo-Sun Choi
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Tae-Jin Je
- Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34141, Republic of Korea.
| | - Eun-Chae Jeon
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
14
|
Zhao Y, Jin KQ, Li JD, Sheng KK, Huang WH, Liu YL. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305917. [PMID: 37639636 DOI: 10.1002/adma.202305917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Du Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Kai Sheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
Shu J, Wang J, Li Z, Tong KYR. Effects of Slit Edge Notches on Mechanical Properties of 3D-Printed PA12 Nylon Kirigami Specimens. Polymers (Basel) 2023; 15:3082. [PMID: 37514471 PMCID: PMC10383772 DOI: 10.3390/polym15143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Kirigami structures, a Japanese paper-cutting art form, has been widely adopted in engineering design, including robotics, biomedicine, energy harvesting, and sensing. This study investigated the effects of slit edge notches on the mechanical properties, particularly the tensile stiffness, of 3D-printed PA12 nylon kirigami specimens. Thirty-five samples were designed with various notch sizes and shapes and printed using a commercial 3D printer with multi-jet fusion (MJF) technique. Finite element analysis (FEA) was employed to determine the mechanical properties of the samples computationally. The results showed that the stiffness of the kirigami samples is positively correlated with the number of edges in the notch shape and quadratically negatively correlated with the notch area of the samples. The mathematical relationship between the stretching tensile stiffness of the samples and their notch area was established and explained from an energy perspective. The relationship established in this study can help fine-tune the stiffness of kirigami-inspired structures without altering the primary parameters of kirigami samples. With the rapid fabrication method (e.g., 3D printing technique), the kirigami samples with suitable mechanical properties can be potentially applied to planar springs for hinge structures or energy-absorbing/harvesting structures. These findings will provide valuable insights into the development and optimization of kirigami-inspired structures for various applications in the future.
Collapse
Affiliation(s)
- Jing Shu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Junming Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zheng Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kai-Yu Raymond Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Zhu S, Yan D, Chen L, Wang Y, Zhu F, Ye Y, Zheng Y, Yu W, Zheng Q. Enhanced Rupture Force in a Cut-Dispersed Double-Network Hydrogel. Gels 2023; 9:gels9020158. [PMID: 36826328 PMCID: PMC9956972 DOI: 10.3390/gels9020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The Kirigami approach is an effective way to realize controllable deformation of intelligent materials via introducing cuts into bulk materials. For materials ranging from ordinary stiff materials such as glass, ceramics, and metals to soft materials, including ordinary hydrogels and elastomers, all of them are all sensitive to the presence of cuts, which usually act as defects to deteriorate mechanical properties. Herein, we study the influence of the cuts on the mechanical properties by introducing "dispersed macro-scale cuts" into a model tough double network (DN) hydrogel (named D-cut gel), which consists of a rigid and brittle first network and a ductile stretchable second network. For comparison, DN gels with "continuous cuts" having the same number of interconnected cuts (named C-cut gel) were chosen. The fracture tests of D-cut gel and C-cut gel with different cut patterns were performed. The fracture observation revealed that crack blunting occurred at each cut tip, and a large wrinkle-like zone was formed where the wrinkles were parallel to the propagation direction of the cut. By utilizing homemade circular polarizing optical systems, we found that introducing dispersed cuts increases the rupture force by homogenizing the stress around the crack tip surrounding every cut, which reduces stress concentration in one certain cut. We believe this work reveals the fracture mechanism of tough soft materials with a kirigami cut structure, which should guide the design of advanced soft and tough materials along this line.
Collapse
Affiliation(s)
- Shilei Zhu
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dongdong Yan
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Chen
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fengbo Zhu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Yanan Ye
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
- Correspondence: (Y.Y.); (Y.Z.)
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
- Correspondence: (Y.Y.); (Y.Z.)
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Qiang Zheng
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|