1
|
Zhang H, Pan Y, Wang M, Wang J, Huang J, Ma R, Yang S, Ma W, Yu S, Cui Y. SETD2 regulates oocytes in vitro maturation through histone methylation and maternal mRNA degradation in yak. Theriogenology 2025; 240:117387. [PMID: 40120144 DOI: 10.1016/j.theriogenology.2025.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
In vitro maturation (IVM) of oocytes is a vital aspect of assisted reproductive technology (ART), and its proper application can enhance reproductive efficiency. However, owing to the scarcity of research on the IVM of yak oocytes, its application in yak breeding remains underexplored. Therefore, in this study, we conducted high-throughput mRNA sequencing of immature and mature yak oocytes, which revealed transcriptomic changes during the IVM process in this unique high-altitude domesticated animal. Transcriptomic analysis also identified the histone methyltransferase SET domain-containing 2 (SETD2) as a key factor associated with post-translational modifications during oocyte maturation. To determine the role of SETD2 in oocytes, we employed the SETD2 inhibitor EZM0414 during oocyte maturation. Inhibition of SETD2 resulted in a significant reduction in histone methylation levels, lower oocyte maturation rate in vitro, and suppression of maternal mRNAs degradation suppression (P < 0.05). These findings indicated that SETD2 modulates oocyte maturation by regulating histone methylation and maternal mRNAs degradation. Furthermore, suppression of SETD2 markedly reduced the expression of oocyte secretion-related proteins (TSG6 and GDF9) and cumulus expansion-related protein (PTGS2), demonstrating that oocyte secretion and cumulus expansion were positively correlated with SETD2. Overall, our findings establish SETD2 as an essential regulator of yak oocyte maturation via histone methylation and maternal mRNAs degradation.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Jinglei Wang
- Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Jiaxin Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Wenbin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China.
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Livestock Embryo Engineering Technology Innovation Center, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Datta A, Rahane D, Bhurle G, Akundi S, Mukherjee U, Dubey A, Barik A, Karmarkar G, Malik N, Ghosh B, Rana N, Borah A, Bhattacharya P. Stroke in Pregnancy Brings Epigenetic Changes in Correlation with Affected Mitochondrial Dynamics and Inflammasome Mediated Apoptosis in Rodents. J Am Heart Assoc 2025; 14:e039411. [PMID: 40314367 DOI: 10.1161/jaha.124.039411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Pregnancy may be a risk factor for stroke in females. Stroke in pregnancy influences mitochondrial dynamics as well as the inflammatory responses in mothers. However, limited studies are available that report any epigenetic changes in the offspring following a stroke in mothers. In the present study we investigate the effect of stroke in pregnancy as a possible epigenetic modifier correlated with dysfunctional mitochondrial dynamics and exacerbated inflammasome mediated apoptosis in the offsprings. METHODS AND RESULTS Female and male Sprague Dawley rats were housed in the same cage in 1:2 ratio to ensure successful pregnancy. Stroke was induced by middle cerebral artery occlusion at gestational day 17. After delivery of F1 generation, bloods were collected from the dams for hormonal study. Brains were harvested from both dams and F1 generation for biochemical, histological, genetic, molecular, and mitochondrial studies. In the F1 generation of stroke induced dams, an increased mitochondrial fission and decreased mitochondrial fusion were observed as compared with normal dams and their F1 generation. Similarly, enhanced mitochondrial reactive oxygen species and depolarization were also observed in the F1 generation of stroke induced dams. Exacerbated inflammasome signaling and enhanced apoptosis were also evident in this F1 generation. Changes in histone-methylation corresponding to increased inflammation were also observed in this F1 generation. CONCLUSIONS The present study reports the occurrence of epigenetic modifications towards mitochondrial dysfunction and exacerbated inflammasome mediated apoptosis in the F1 generation following a stroke in pregnant dams.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Dipali Rahane
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Gangadhar Bhurle
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Soumya Akundi
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Ushmita Mukherjee
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Akshada Dubey
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Anirban Barik
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Gautam Karmarkar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Nikita Malik
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Nikita Rana
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics Assam University Silchar Assam India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar Gujarat India
| |
Collapse
|
3
|
Zhang YR, Guo SM, Shi XY, Ding YW, Li HB, Li L, Xu JW, He X, Ma BX, Yin Y, Zhou LQ. Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation. Cell Rep 2025; 44:115215. [PMID: 39823229 DOI: 10.1016/j.celrep.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/22/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages. Gene collections with different expression patterns are obtained, with genes mainly transcribed at the mouse early/late 2-cell stage designated as zygotic genome activation-early/late 2-cell (ZGA-E2C/L2C). ZGA-E2C genes are short and have low promoter CpG density. Protein translation/degradation not only regulates transcription activity through stepwise orchestration of histone modifications, transcriptional initiation, and elongation in early mouse embryos but also controls on/off switching of ZGA-E2C/L2C genes in maternal aged mouse embryos. Genes mainly transcribed at the mouse 2-cell stage can also be transcribed as early as the human 2-cell stage.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shi-Meng Guo
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing 400012, P.R. China
| | - Xiao-Yan Shi
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi-Wen Ding
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huai-Biao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jia-Wei Xu
- NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bing-Xin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China.
| |
Collapse
|
4
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024; 41:3301-3316. [PMID: 39325344 PMCID: PMC11706821 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
5
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Wang L, Liu Y, Song Y, Mei Q, Mou H, Wu J, Tang X, Ai J, Li K, Xiao H, Han X, Lv L, Li H, Zhang L, Xiang W. Enhancing Oocyte Quality in Aging Mice: Insights from Mesenchymal Stem Cell Therapy and FOXO3a Signaling Pathway Activation. Reprod Sci 2024; 31:2392-2408. [PMID: 38532230 DOI: 10.1007/s43032-024-01509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Ovarian aging reduced the quality of oocytes, resulting in age-related female infertility. It is reported that mesenchymal stem cells (MSCs) therapy can improve age-related ovarian function decline and the success rate of in vitro maturation (IVM) in assisted reproductive therapy. In order to investigate the effectiveness and mechanisms of MSCs to enhance oocyte quality of cumulus oocyte complexes (COCs) in advanced age, this study focus on the respective functional improvement of oocytes and granulosa cells (GCs) from aging mice and further to explore and verify the possible mechanisms. Here, we studied a popular but significant protein of follicular development, Forkhead box O-3a (FOXO3a), which is a transcription factor that mediates a variety of cellular processes, but the functions of which in regulating oocyte quality in MSCs therapy still remain inconclusive. In this study, the RNA-seq data of metaphase II (MII) oocytes and GCs isolated from COCs confirmed that, GCs of immature follicles show the most potential to be the targeted cells of bone marrow mesenchymal stem cells (BMSCs) by FOXO3a signaling pathway. Furthermore, we demonstrated the effectiveness of BMSCs co-culture with aging COCs to enhance oocyte quality and found its mechanism to function via ameliorating the biological function of GCs by alleviating FOXO3a levels. These results provide significant fundamental research on MSCs therapy on ovarian aging, as well as offering guidance for raising the success rate of assisted reproductive technology such IVM in clinical and non-clinical settings.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Obstetrics and Gynecology Reproductive Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yinhua Song
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbei Mou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiachen Wu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Tang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kezhen Li
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Houxiu Xiao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Liqun Lv
- Wuhan Kangjian Maternal and Infant Hospital, Wuhan, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
8
|
Zhang YR, Yin Y, Guo SM, Wang YF, Zhao GN, Ji DM, Zhou LQ. The landscape of transcriptional profiles in human oocytes with different chromatin configurations. J Ovarian Res 2024; 17:99. [PMID: 38730385 PMCID: PMC11088011 DOI: 10.1186/s13048-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi-Meng Guo
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fan Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Nian Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong-Mei Ji
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| |
Collapse
|
9
|
Silva AFB, Morais ANP, Lima LF, Ferreira ACA, Silva RF, Sá NAR, Kumar S, Oliveira AC, Alves BG, Rodrigues APR, Gastal EL, Bordignon V, Figueiredo JR. Trimethylation profile of histones H3 lysine 4 and 9 in late preantral and early antral caprine follicles grown in vivo versus in vitro in the presence of anethole. Mol Reprod Dev 2023; 90:810-823. [PMID: 37671983 DOI: 10.1002/mrd.23700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023]
Abstract
This study assessed the histones methylation profile (H3K4me3 and H3K9me3) in late preantral (PA) and early antral (EA) caprine follicles grown in vivo and in vitro, and the anethole effect during in vitro culture of PA follicles. Uncultured in vivo-grown follicles (PA, n = 64; EA, n = 73) were used as controls to assess the methylation profile and genes' expression related to apoptosis cascade (BAX, proapoptotic; BCL2, antiapoptotic), steroidogenesis (CYP17, CYP19A1), and demethylation (KDM1AX1, KDM1AX2, KDM3A). The isolated PA follicles (n = 174) were cultured in vitro for 6 days in α-MEM+ in either absence (control) or presence of anethole. After culture, EA follicles were evaluated for methylation, mRNA abundance, and morphometry. Follicle diameter increased after culture, regardless of treatment. The methylation profile and the mRNA abundance were similar between in vivo-grown PA and EA follicles. Anethole treatment led to higher H3K4me3 fluorescence intensity in EA follicles. The mRNA abundances of BAX, CYP17, and CYP19A1 were higher, and BCL2 and KDM3A were lower in in vitro-grown EA follicles than in vivo-grown follicles. In conclusion, in vitro follicle culture affected H3K4me3 fluorescence intensity, mRNA abundance of apoptotic genes, and steroidogenic and demethylase enzymes compared with in vivo-grown follicles.
Collapse
Affiliation(s)
- Ana F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana N P Morais
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Anna C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Satish Kumar
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ariclécio C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, Goiás, Brazil
| | - Ana P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|