1
|
Duan X, Niu B, Wang Y, Yang Z, Ren H, Li G, Wei Z, Cheng J, Zhang Z, Hao Z. Regulating the Electronic Metal-Support Interaction of Single-Atom Ruthenium Catalysts for Boosting Chlorobenzene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7408-7418. [PMID: 40183972 DOI: 10.1021/acs.est.5c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Developing highly active single-atom catalysts (SACs) with excellent chlorine resistance for efficient oxidation of harmful chlorinated volatile organic compounds (CVOCs) is a great challenge. Tuning the electronic metal-support interaction (EMSI) is viable for promoting catalytic performances of SACs. Herein, an effective strategy of modulating the EMSI in Ru1/CeO2 SACs by thermal treatment control is proposed, which distinctly enhances the activities of the catalyst for chlorobenzene (CB) oxidation and chlorine conversion, accomplishing total CB degradation at nearly 260 °C. Detailed characterization and theoretical calculations reveal that the EMSI induces electron transfer from Ru to CeO2, optimizing the coordination and electronic structure of single-atom Ru and accordingly facilitating the adsorption and activation of CB. Moreover, the surface lattice oxygen (Olatt) at the Ru-O-Ce interface is demonstrated as the critical reactive oxygen species, the mobility and reactivity of which are also prompted by the EMSI, leading to the boosted conversion of reaction intermediates. This work sheds light on the effect of EMSI regulation on CVOC catalytic oxidation and provides guidance on fabricating high-efficiency SACs for environmental catalysis.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yiwen Wang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongna Ren
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zheng Wei
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Wang B, Xuan Y, Zhu G, Liang Y, Peng Y, Chang Q, Luan T, Wang D, Li J. Lattice Oxygen Engineering on Perovskite Oxide Catalysts: Concurrent Enhancement of Reactivity and Replenishment for Volatile Organic Compounds Oxidation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21168-21179. [PMID: 39982202 DOI: 10.1021/acsami.4c21690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The catalytic volatile organic compound oxidation poses a dilemma for perovskite (ABO3) catalysts, as their high lattice oxygen reactivity (electron-deficient O-(2-x)) depends on attracting coordinated oxygen electrons through an increased electronegativity of B-site cations, but this impedes the healing of oxygen vacancies and thus results in a low concentration of active lattice oxygen due to the limited O2 dissociation in electron-deficient environments. Herein, we compress [Co/MnO6] octahedra through A-site Cs+ doping in the double perovskite (La2CoMnO6-σ), which optimizes the orbital hybridization between Co/Mn 3d and O 2p. This promotes electron transfer from O to Co/Mn while reducing Co/Mn electronegativity, resulting in a synergistic improvement of lattice oxygen reactivity and oxygen vacancy healing. As a result, La1.70Cs0.30CoMnO6-δ exhibits a remarkable 30.2-fold and 4.5-fold increase in toluene oxidation rates at 200 °C compared to LaMnO3 and La2CoMnO6-σ, respectively, surpassing the reported Co/Mn-based perovskites. Due to its ultrahigh lattice oxygen reactivity and abundant active lattice oxygen, benzaldehyde intermediates predominantly governed by adsorbed oxygen are synchronously oxidized to CO2 and H2O by lattice oxygen, enabling Mars-van Krevelen reactions to function efficiently coupled with Langmuir-Hinshelwood reactions. This work harmonizes the reactivity and abundance of lattice oxygen, offering a robust strategy to advance the development of high-performance perovskite catalysts for catalytic oxidation.
Collapse
Affiliation(s)
- Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Gengde Zhu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiaowan Chang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Luan
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wang B, Xuan Y, Meng S, Fan W, Liang Y, Peng Y, Chang Q, Luan T, Wang D, Li J. Homogeneously Distributed Heterostructure Energizes and Replenishes Oxygen Species for Boosting Toluene Oxidation on Perovskite Oxide Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5306-5317. [PMID: 40051053 DOI: 10.1021/acs.est.4c09900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Enriching oxygen species in perovskite catalysts provides more active sites for the catalytic oxidation of air pollutants, but its further application in environmental chemical engineering is still constrained by the inherent lack of oxygen species reactivity and the difficulty of replenishing depleted oxygen species. Herein, we present a scalable one-pot strategy for the in situ fabrication of a homogeneously distributed heterostructure, which brings La2CuO4 perovskite a 58-fold activity enhancement and robust antisintering/water/coke in toluene oxidation, higher than currently reported perovskite catalysts. Superior to the single "oxygen enrichment" effect of conventional surface-aggregated heterostructures, the homogeneously distributed heterostructures induce the reactivity enhancement of adsorbed oxygen and the backfilling/replenishment of depleted lattice oxygen, which break through the rate-determining steps of the low-temperature Langmuir-Hinshelwood and the high-temperature Mars-van Krevelen mechanisms, respectively. The scalability has been demonstrated in broader perovskite systems and for oxygen evolution reaction, offering a more dependable oxygen supply for environmental catalysis.
Collapse
Affiliation(s)
- Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Shuai Meng
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Wenjie Fan
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiaowan Chang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Luan
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Li YY, Ren Y, He J, Xiao H, Li JR. Recent Advances of the Effect of H 2O on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1034-1059. [PMID: 39762185 DOI: 10.1021/acs.est.4c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of H2O and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of H2O on VOC oxidation. To develop water-resistant catalysts, understanding the mechanistic role of H2O and implementing effective water-resistance strategies with influencing factors are imperative. This Perspective systematically summarizes related research on the impact of H2O on VOC oxidation, drawing from over 390 papers published between 2013 and 2024. Five main influencing factors are proposed to clarify their effects on the role of H2O. Five inhibition/promotion mechanisms of H2O are introduced, elucidating their role in the catalytic oxidation of various VOCs. Additionally, different kinds of water resistance strategies are discussed, including the fabrication of hydrophobic materials, the design of specific structures and morphologies, and the introduction of additional elements for catalyst modification. Finally, scientific challenges and opportunities for enhancing the design of efficient and water-resistant catalysts for practical applications in VOC purification are highlighted.
Collapse
Affiliation(s)
- Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yong Ren
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| |
Collapse
|
5
|
Wu L, Liu Y, Yu X, Gao R, Jia Y, Sun Q, Feng Y, Jing L, Hou Z, Deng J, Dai H. Constructing Bridge Hydroxyl Groups on the Ru/MO x/HZSM-5 (M = W, Mo) Catalysts to Promote the Hydrolysis Oxidation of Multicomponent VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:945-955. [PMID: 39718825 DOI: 10.1021/acs.est.4c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chlorinated and oxygenated volatile organic compounds (CVOCs and OVOCs) pose a significant threat to human health. Catalytic oxidation effectively removes these pollutants, but catalyst deactivation is a challenge. Our study focused on the hydrolysis oxidation of chlorobenzene (CB) and ethyl acetate (EA) over Ru/MOx/HZSM-5 (M = W, Mo). It was found that doping MoOx to the catalyst increased the structural hydroxyl amount and balanced surface acidity, thus significantly improving the catalytic stability, with Ru/MoOx/HZSM-5 exhibiting a better activity for CB and EA oxidation (T90% = 438 and 276 °C at space velocity = 20,000 mL g-1 h-1, respectively). Water vapor introduction considerably promoted hydrolysis oxidation and protected the active sites from being poisoned by cumulative chlorine. The synergistic interaction of the Mo-O(H)-Al structure in Ru/MoOx/HZSM-5 with the Si-OH-Al structure promotes the activation of H2O to form bridging hydroxyl groups, which provide a proton-rich environment for hydrolysis oxidation. It was also found that dissociated H2O reacted with adsorbed oxygen species to form highly active *OOH, accelerating the deep oxidation of intermediates. We believe that the present study can provide a unique strategy for the effective elimination of multicomponent VOCs under complex conditions.
Collapse
Affiliation(s)
- Linke Wu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yiwen Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qinpei Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Li J, Xue L, Deng Y, Cheng X, Ma J, Xie W, Chen M, Deng Y. A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals. ACS CENTRAL SCIENCE 2024; 10:2274-2284. [PMID: 39735319 PMCID: PMC11672546 DOI: 10.1021/acscentsci.4c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024]
Abstract
An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.g., WO3, ZrO2, TiO2) with in-pore walls precisely decorated by various noble metal nanocrystals of tailored components (Au, Ag, Pt, Pd and their nanoalloys) and sizes (3.0-8.5 nm). As an example, the obtained mesoporous 0.5-Ag/WO3 material has a highly interconnected mesoporous structure and uniform 6.5 nm Ag nanocrystals confined in the mesopores, showing superior NO sensing performances with high sensitivity, good selectivity, and stability at low working temperature (127 °C). In situ spectroscopy study indicates that the NO sensing process involves a unique gas-solid reaction, where NO molecules are converted into chemisorbed NO x species over the sensitive materials, inducing a remarkable change of resistance and outputting a dramatic response signal.
Collapse
Affiliation(s)
- Jichun Li
- Department
of Chemistry, Shanghai Stomatological Hospital & School of Stomatology,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- State
Key Lab of Transducer Technology, Shanghai
Institute of Microsystem and Information Technology, Chinese Academy
of Sciences, Shanghai 200050, P. R. China
| | - Lingxiao Xue
- Department
of Chemistry, Shanghai Stomatological Hospital & School of Stomatology,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaowei Cheng
- Department
of Chemistry, Shanghai Stomatological Hospital & School of Stomatology,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Junhao Ma
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
| | - Wenhe Xie
- Department
of Chemistry, Shanghai Stomatological Hospital & School of Stomatology,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Meihua Chen
- Department
of Chemistry, Shanghai Stomatological Hospital & School of Stomatology,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yonghui Deng
- Department
of Chemistry, Shanghai Stomatological Hospital & School of Stomatology,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- State
Key Lab of Transducer Technology, Shanghai
Institute of Microsystem and Information Technology, Chinese Academy
of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
7
|
Wu X, Zhu X, Qin Y, Mei T, Min X, Guo M, Jia J, Sun T. Selective recovery of manganese from spent ternary lithium-ion batteries for efficient catalytic oxidation of VOCs: Unveiling the mechanism of activity Enhancement in recycled catalysts. ENVIRONMENTAL RESEARCH 2024; 262:119865. [PMID: 39216735 DOI: 10.1016/j.envres.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
With the widespread application of ternary lithium-ion batteries (TLBs) in various fields, the disposal of spent TLBs has become a globally recognized issue. This study proposes a novel method for reutilizing metal resources from TLBs. Through selective oxidation, manganese in a leaching solution of TLBs was converted into MnO2 with α, γ, and δ crystal phases (referred to as T-MnO2) for catalytic oxidation of volatile organic compounds (VOCs), while efficiently separating manganese from high-value metals such as nickel, cobalt, and lithium, achieving a manganese recovery rate of 99.99%. Compared to similar MnO2 prepared from pure materials, T-MnO2 exhibited superior degradation performance for toluene and chlorobenzene, with T90 decreasing by around 30 °C. The acidic synthesis environment provided by the leaching solution and the doping of trace metals altered the physicochemical properties of T-MnO2, such as increased specific surface area, elevated surface manganese valence, and improved redox performance and oxygen vacancy properties, enhancing its catalytic oxidation capacity. Furthermore, the degradation pathway of toluene on T-γ-MnO2 was inferred using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) and in-situ DRIFTs. This study provides a novel approach for recycling spent TLBs and treating VOCs catalytically.
Collapse
Affiliation(s)
- Xueqian Wu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China
| | - Xuewen Zhu
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China
| | - Yao Qin
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China
| | - Tianhong Mei
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China
| | - Xin Min
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China.
| | - Mingming Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| | - Tonghua Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China
| |
Collapse
|
8
|
Ma Z, Li Y, Sun K, Ahmed J, Tian W, Xu J. Insights into the roles of superficial lattice oxygen in formaldehyde oxidation on birnessite. NANOSCALE 2024; 16:12541-12549. [PMID: 38884124 DOI: 10.1039/d4nr01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
K+-modified birnessite materials were constructed to remove formaldehyde (HCHO) in this work. The introduction of K+ led to weakening of the Mn-O bonds and enhanced the migration of superficial lattice oxygen, resulting in improved redox properties and catalytic activity. MnO2-3K with the largest specific surface area and greatest abundance of superficial lattice oxygen showed the best catalytic performance at 30-130 °C. The operando analyses reveal that HCHO is primarily activated to dioxymethylene (DOM) and subsequently converted to formate species (*COOH). The accumulation of formate species caused a decline in catalytic performance during extended testing at 30 °C, a challenge that could be mitigated by raising the temperature. Theoretical studies disclose that the *COOH → *H2CO3 step with the largest energy barrier is the rate limiting step for HCHO deep decomposition. Molecular oxygen could be activated at oxygen vacancies to replenish the depleted lattice oxygen after decomposition of carbonate species (*H2CO3) and CO2 and H2O desorption. The adsorbed oxygen and water did not limit the deep oxidation of HCHO. This research presents a promising approach for designing highly efficient, non-noble metal catalysts for formaldehyde degradation.
Collapse
Affiliation(s)
- Zhaoxia Ma
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Yongqi Li
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Kongyuan Sun
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Blvd, St. Louis, 63121, MO, USA
| |
Collapse
|
9
|
Zhu P, Yuan Q, Li N, Hu Z, Chen S. Catalytic Oxidation of Chlorobenzene over Amorphous Manganese-Chromium Catalysts Supported by UiO-66-Derived ZrOx. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2103. [PMID: 38730910 PMCID: PMC11084826 DOI: 10.3390/ma17092103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
The development of efficient catalysts with longevity to remove chlorobenzene is challenging due to Cl poisoning. Herein, a series of Mn-Cr/ZrOx catalysts supported by Zr-based metal-organic framework (UiO-66)-derived ZrOx was prepared and investigated for chlorobenzene (CB) catalytic oxidation. MnCr/ZrOx-M prepared via a wet impregnation method presented an amorphous structure, indicating the homogeneous dispersion of Cr and Mn, which improved acid and redox properties. 40Mn7Cr3/ZrOx-M exhibited the best catalytic activity for chlorobenzene oxidation with T90 of 293 °C, which is mainly due to the strong interaction between manganese and chromium promoted by the large specific surface area of the ZrOx support. Furthermore, 40Mn7Cr3/ZrOx-M presented excellent stability for chlorobenzene oxidation.
Collapse
Affiliation(s)
| | | | | | | | - Shouwen Chen
- School of Biological and Environmental Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (P.Z.); (Q.Y.); (N.L.); (Z.H.)
| |
Collapse
|
10
|
Xie H, Chen R, Song Y, Shen Y, Song F, He B, Jiang X, Yin Y, Wang W. Myriophyllum Biochar-Supported Mn/Mg Nano-Composites as Efficient Periodate Activators to Enhance Triphenyl Phosphate Removal from Wastewater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1118. [PMID: 38473590 DOI: 10.3390/ma17051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Transition metals and their oxide compounds exhibit excellent chemical reactivity; however, their easy agglomeration and high cost limit their catalysis applications. In this study, an interpolation structure of a Myriophyllum verticillatum L. biochar-supported Mn/Mg composite (Mn/Mg@MV) was prepared to degrade triphenyl phosphate (TPhP) from wastewater through the activating periodate (PI) process. Interestingly, the Mn/Mg@MV composite showed strong radical self-producing capacities. The Mn/Mg@MV system degraded 93.34% TPhP (pH 5, 10 μM) within 150 min. The experimental results confirmed that the predominant role of IO3· and the auxiliary ·OH jointly contributed to the TPhP degradation. In addition, the TPhP pollutants were degraded to various intermediates and subsequent Mg mineral phase mineralization via mechanisms like interfacial processes and radical oxidation. DFT theoretical calculations further indicated that the synergy between Mn and Mg induced the charge transfer of the carbon-based surface, leading to the formation of an ·OH radical-enriched surface and enhancing the multivariate interface process of ·OH, IO3, and Mn(VII) to TPhP degradation, resulting in the further formation of Mg PO4 mineralization.
Collapse
Affiliation(s)
- Hanyun Xie
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuxia Song
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yan Shen
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Fengming Song
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Bo He
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Xiaomei Jiang
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Yifan Yin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| |
Collapse
|
11
|
Lv X, Wu S, Shao S, Yan D, Xu W, Jia H, He H. Efficient Catalytic Elimination of Chlorobenzene Based on the Water Vapor-Promoting Effect within Mn-Based Catalysts: Activity Enhancement and Polychlorinated Byproduct Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3985-3996. [PMID: 38357760 DOI: 10.1021/acs.est.3c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Achieving no or low polychlorinated byproduct selectivity is essential for the chlorinated volatile organic compounds (CVOCs) degradation, and the positive roles of water vapor may contribute to this goal. Herein, the oxidation behaviors of chlorobenzene over typical Mn-based catalysts (MnO2 and acid-modified MnO2) under dry and humid conditions were fully explored. The results showed that the presence of water vapor significantly facilitates the deep mineralization of chlorobenzene and restrains the formation of Cl2 and dichlorobenzene. This remarkable water vapor-promoting effect was conferred by the MnO2 substrate, which could suitably synergize with the postconstructed acidic sites, leading to good activity, stability, and desirable product distribution of acid-modified MnO2 catalysts under humid conditions. A series of experiments including isotope-traced (D2O and H218O) CB-TPO provided complete insights into the direct involvement of water molecules in chlorobenzene oxidation reaction and attributed the root cause of the water vapor-promoting effect to the proton-rich environment and highly reactive water-source oxygen species rather than to the commonly assumed cleaning effect or hydrogen proton transfer processes (generation of active OOH). This work demonstrates the application potential of Mn-based catalysts in CVOCs elimination under practical application conditions (containing water vapor) and provides the guidance for the development of superior industrial catalysts.
Collapse
Affiliation(s)
- Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaining Wu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siting Shao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxu Yan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Li X, Chen R, Yang M, Niu Y, Li J, Shao D, Zheng X, Zhang C, Qi Y. Insight into modified CeMn based catalysts for efficient degradation of toluene by in situ infrared. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169192. [PMID: 38097085 DOI: 10.1016/j.scitotenv.2023.169192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Trace activated carbon (AC) and diatomaceous earth (DE) were used as structural promoters to be incorporated into Ce-Mn-based solid-solution catalysts by the redox precipitation method. The modified catalysts exhibit superior reducibility, with abundant Ce3+, Mn3+and reactive oxygen species, which are facilitated to the migration of oxygen and the generation of oxygen vacancies. In particular, the catalytic combustion temperatures of 90 % toluene (3000 ppm) on Ce1Mn3Ox-AC/DE were 84 °C (dry) and 123 °C (10 vol% H2O), respectively. The role of lattice oxygen and adsorbed oxygen was revealed by in situ DRIFTS. Additionally, in situ DRIFTS was employed to verify that the degradation of toluene by Ce1Mn3Ox-AC/DE satisfied the Langmuir-Hinshelwood (L-H) mechanism and the Mars-Van Krevelen (MvK) mechanism. The possible reaction pathway was elucidated (toluene → benzyl alcohol → benzoic acid → maleic anhydride → CO2 + H2O). Furthermore, final products attributed to toluene oxidation were detected by in situ DRIFTS at 50 °C in the absence of oxygen, confirming that the catalyst possessed outstanding performance at low temperatures beyond mere adsorption.
Collapse
Affiliation(s)
- Xuelian Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rujie Chen
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Min Yang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yongfang Niu
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Dan Shao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Xinmei Zheng
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Chuanwei Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yanxing Qi
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China.
| |
Collapse
|
13
|
Liu XH, Lu T, Jiao X, Jiang Z, Chen C, Wang Y, Jian Y, He C. Formaldehyde Ambient-Temperature Decomposition over Pd/Mn 3O 4-MnO Driven by Active Sites' Self-Tandem Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1752-1762. [PMID: 38190653 DOI: 10.1021/acs.est.3c06876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The widespread presence of formaldehyde (HCHO) pollutant has aroused significant environmental and health concerns. The catalytic oxidation of HCHO into CO2 and H2O at ambient temperature is regarded as one of the most efficacious and environmentally friendly approaches; to achieve this, however, accelerating the intermediate formate species formation and decomposition remains an ongoing obstacle. Herein, a unique tandem catalytic system with outstanding performance in low-temperature HCHO oxidation is proposed on well-structured Pd/Mn3O4-MnO catalysts possessing bifunctional catalytic centers. Notably, the optimized tandem catalyst achieves complete oxidation of 100 ppm of HCHO at just 18 °C, much better than the Pd/Mn3O4 (30%) and Pd/MnO (27%) counterparts as well as other physical tandem catalysts. The operando analyses and physical tandem investigations reveal that HCHO is primarily activated to gaseous HCOOH on the surface of Pd/Mn3O4 and subsequently converted to H2CO3 on the Pd/MnO component for deep decomposition. Theoretical studies disclose that Pd/Mn3O4 exhibits a favorable reaction energy barrier for the HCHO → HCOOH step compared to Pd/MnO; while conversely, the HCOOH → H2CO3 step is more facilely accomplished over Pd/MnO. Furthermore, the nanoscale intimacy between two components enhances the mobility of lattice oxygen, thereby facilitating interfacial reconstruction and promoting interaction between active sites of Pd/Mn3O4 and Pd/MnO in local vicinity, which further benefits sustained HCHO tandem catalytic oxidation. The tandem catalysis demonstrated in this work provides a generalizable platform for the future design of well-defined functional catalysts for oxidation reactions.
Collapse
Affiliation(s)
- Xiao-He Liu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Tong Lu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xinguo Jiao
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yadi Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
14
|
Yang GQ, Niu Y, Kondratenko VA, Yi X, Liu C, Zhang B, Kondratenko EV, Liu ZW. Controlling Metal-Oxide Reducibility for Efficient C-H Bond Activation in Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202310062. [PMID: 37702304 DOI: 10.1002/anie.202310062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Knowing the structure of catalytically active species/phases and providing methods for their purposeful generation are two prerequisites for the design of catalysts with desired performance. Herein, we introduce a simple method for precise preparation of supported/bulk catalysts. It utilizes the ability of metal oxides to dissolve and to simultaneously precipitate during their treatment in an aqueous ammonia solution. Applying this method for a conventional VOx -Al2 O3 catalyst, the concentration of coordinatively unsaturated Al sites was tuned simply by changing the pH value of the solution. These sites affect the strength of V-O-Al bonds of isolated VOx species and thus the reducibility of the latter. This method is also applicable for controlling the reducibility of bulk catalysts as demonstrated for a CeO2 -ZrO2 -Al2 O3 system. The application potential of the developed catalysts was confirmed in the oxidative dehydrogenation of ethylbenzene to styrene with CO2 and in the non-oxidative propane dehydrogenation to propene. Our approach is extendable to the preparation of any metal oxide catalysts dissolvable in an ammonia solution.
Collapse
Affiliation(s)
- Guo-Qing Yang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Vita A Kondratenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chang Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Evgenii V Kondratenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
15
|
Zhu D, Huang Y, Li R, Peng S, Wang P, Cao JJ. Constructing Active Cu 2+-O-Fe 3+ Sites at the CuO-Fe 3O 4 Interface to Promote Activation of Surface Lattice Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17598-17609. [PMID: 37906717 DOI: 10.1021/acs.est.3c05431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Activating surface lattice oxygen (Olatt) through the modulation of metal-oxygen bond strength has proven to be an effective route for facilitating the catalytic degradation of volatile organic compounds (VOCs). Although this strategy has been implemented via the construction of the TM1-O-TM2 (TM represents a transition metal) structure in various reactions, the underlying principle requires exploration when using different TMs. Herein, the Cu2+-O-Fe3+ structure was created by developing CuO-Fe3O4 composites with enhanced interfacial effect, which exhibited superior catalytic activity to their counterparts, with T90 (the temperature of toluene conversion reaching 90%) decreasing by approximately 50 °C. Structural analyses and theoretical calculations demonstrated that the active Cu2+-O-Fe3+ sites at the CuO-Fe3O4 interface improved low-temperature reducibility and oxygen species activity. Particularly, X-ray absorption fine structure spectroscopy revealed the contraction and expansion of Cu-O and Fe-O bonds, respectively, which were responsible for the activation of the surface Olatt. A mechanistic study revealed that toluene can be oxidized by rapid dehydrogenation of methyl assisted by the highly active surface Olatt and subsequently undergo ring-opening and deep mineralization into CO2 following the Mars-van Krevelen mechanism. This study provided a novel strategy to explore interface-enhanced TM catalysts for efficient surface Olatt activation and VOCs abatement.
Collapse
Affiliation(s)
- Dandan Zhu
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Rong Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Shiqi Peng
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Pengge Wang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Jun-Ji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|