1
|
Wang B, Yu Y, Li J, Xiong Y, Zhang X, Wan Y, Zheng R, Zhang C. Hypothalamic GABAergic neurons: their roles in health and metabolic diseases. Front Endocrinol (Lausanne) 2025; 16:1551741. [PMID: 40130157 PMCID: PMC11930815 DOI: 10.3389/fendo.2025.1551741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Hypothalamic GABAergic neurons are important in regulating metabolic homeostasis and energy balance. Serving as critical integrators of catabolic and anabolic processes, these neurons orchestrate a broad spectrum of metabolic functions, including feeding, nutrient metabolism, fluid homeostasis, basal metabolism, thermoregulation, and circadian rhythms. Recent advances in neuroscience have facilitated a deeper exploration of the role of hypothalamic GABAergic neurons in metabolic regulation. Emerging research has uncovered key mechanisms through which these neurons modulate energy balance and maintain metabolic balance. These findings not only enhance our understanding of obesity and related metabolic disorders but also underscore the link between hypothalamic dysfunction and prevalent metabolic diseases such as obesity and type 2 diabetes. This review summarizes the latest advancements in our understanding of the role of hypothalamic GABAergic neurons in metabolic regulation. It aims to elucidate the neural and molecular mechanisms underlying hypothalamic control of metabolism, offering new perspectives for the diagnosis and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Bingwei Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Xiong
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Chunxiang Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Wang B, Hu Z, Cui L, Zhao M, Su Z, Jiang Y, Liu J, Zhao Y, Hou Y, Yang X, Zhang C, Guo B, Li D, Zhao L, Zheng S, Zhao Y, Yang W, Wang D, Yu S, Zhu S, Yan Y, Yuan G, Li K, Zhang W, Qin L, Zhang W, Sun F, Luo J, Zheng R. βAR-mTOR-lipin1 pathway mediates PKA-RIIβ deficiency-induced adipose browning. Theranostics 2024; 14:5316-5335. [PMID: 39267778 PMCID: PMC11388065 DOI: 10.7150/thno.97046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Enhancing white adipose tissue (WAT) browning combats obesity. The RIIβ subunit of cAMP-dependent protein kinase (PKA) is primarily expressed in the brain and adipose tissue. Deletion of the hypothalamic RIIβ gene centrally induces WAT browning, yet the peripheral mechanisms mediating this process remain unexplored. Methods: This study investigates the mechanisms underlying WAT browning in RIIβ-KO mice. Genetic approaches such as β3-adrenergic receptors (β3ARs) deletion and sympathetic denervation of WAT were utilized. Genome-wide transcriptomic sequencing and bioinformatic analysis were employed to identify potential mediators of WAT browning. siRNA assays were employed to knock down mTOR and lipin1 in vitro, while AAV-shRNAs were used for the same purpose in vivo. Results: We found that WAT browning substantially contributes to the lean and obesity-resistant phenotypes of RIIβ-KO mice. The WAT browning can be dampened by β3ARs deletion or WAT sympathetic denervation. We identified that adipocytic mTOR and lipin1 may act as mediators of the WAT browning. Inhibition of mTOR or lipin1 abrogates WAT browning and hinders the lean phenotype of RIIβ-KO mice. In human subcutaneous white adipocytes and mouse white adipocytes, β3AR stimulation can activate mTOR and causes lipin1 nuclear translocation; knockdown of mTOR and Lipin1 mitigates WAT browning-associated gene expression, impedes mitochondrial activity. Moreover, mTOR knockdown reduces lipin1 level and nuclear translocation, indicating that lipin1 may act downstream of mTOR. Additionally, in vivo knockdown of mTOR and Lipin1 diminished WAT browning and increased adiposity. Conclusions: The β3AR-activated mTOR-lipin1 axis mediates WAT browning, offering new insights into the molecular basis of PKA-regulated WAT browning. These findings provide potential adipose target candidates for the development of drugs to treat obesity.
Collapse
Affiliation(s)
- Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Zhiping Hu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Peking University, Beijing, China
- Present address: Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Long Cui
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Miao Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoning Yang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bingbing Guo
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Daotong Li
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Shengmin Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Yiguo Zhao
- Department of Gastrointestinal Surgery, Peking University International Hospital, Peking University, Beijing, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University, Beijing, China
| | - Shigong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing, China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
3
|
Ma K, Yin K, Li J, Ma L, Zhou Q, Lu X, Li B, Li J, Wei G, Zhang G. The Hypothalamic Epigenetic Landscape in Dietary Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306379. [PMID: 38115764 PMCID: PMC10916675 DOI: 10.1002/advs.202306379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The hypothalamus in the brain plays a pivotal role in controlling energy balance in vertebrates. Nutritional excess through high-fat diet (HFD) feeding can dysregulate hypothalamic signaling at multiple levels. Yet, it remains largely unknown in what magnitude HFD feeding may impact epigenetics in this brain region. Here, it is shown that HFD feeding can significantly alter hypothalamic epigenetic events, including posttranslational histone modifications, DNA methylation, and chromatin accessibility. The authors comprehensively analyze the chromatin immunoprecipitation-sequencing (ChIP-seq), methylated DNA immunoprecipitation-sequencing (MeDIP-seq), single nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), and RNA-seq data of the hypothalamus of C57 BL/6 mice fed with a chow or HFD for 1 to 6 months. The chromatins are categorized into 6 states using the obtained ChIP-seq data for H3K4me3, H3K27ac, H3K9me3, H3K27me3, and H3K36me3. A 1-month HFD feeding dysregulates histone modifications and DNA methylation more pronouncedly than that of 3- or 6-month. Besides, HFD feeding differentially impacts chromatin accessibility in hypothalamic cells. Thus, the epigenetic landscape is dysregulated in the hypothalamus of dietary obesity mice.
Collapse
Affiliation(s)
- Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Kaili Yin
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jiong Li
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li Ma
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Qun Zhou
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Bo Li
- Department of EndocrinologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Juxue Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Guo Zhang
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Pathophysiology, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Institute of Metabolism and HealthHenan UniversityKaifengHenanChina
- Zhongzhou LaboratoryZhengzhouHenan450046China
| |
Collapse
|
4
|
Wang X, Wu X, Wu H, Xiao H, Hao S, Wang B, Li C, Bleymehl K, Kauschke SG, Mack V, Ferger B, Klein H, Zheng R, Duan S, Wang H. Neural adaption in midbrain GABAergic cells contributes to high-fat diet-induced obesity. SCIENCE ADVANCES 2023; 9:eadh2884. [PMID: 37910621 PMCID: PMC10619925 DOI: 10.1126/sciadv.adh2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Overeating disorders largely contribute to worldwide incidences of obesity. Available treatments are limited. Here, we discovered that long-term chemogenetic activation of ventrolateral periaqueductal gray (vlPAG) GABAergic cells rescue obesity of high-fat diet-induced obesity (DIO) mice. This was associated with the recovery of enhanced mIPSCs, decreased food intake, increased energy expenditure, and inguinal white adipose tissue (iWAT) browning. In vivo calcium imaging confirmed vlPAG GABAergic suppression for DIO mice, with corresponding reduction in intrinsic excitability. Single-nucleus RNA sequencing identified transcriptional expression changes in GABAergic cell subtypes in DIO mice, highlighting Cacna2d1 as of potential importance. Overexpressing CACNA2D1 in vlPAG GABAergic cells of DIO mice rescued enhanced mIPSCs and calcium response, reversed obesity, and therefore presented here as a potential target for obesity treatment.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaotong Wu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Wu
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang 310058, China
| | - Hanyang Xiao
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sijia Hao
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100091, China
| | - Chen Li
- Department of Human Genetics and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Katherin Bleymehl
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Stefan G. Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Volker Mack
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Boris Ferger
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, 88397, Germany
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100091, China
| | - Shumin Duan
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
5
|
Zhou W, Zhao L, Mao Z, Wang Z, Zhang Z, Li M. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. Cell Mol Neurobiol 2023; 43:2675-2696. [PMID: 37067749 PMCID: PMC10106324 DOI: 10.1007/s10571-023-01345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
A number of substances released by the brain under physiological and pathological conditions exert effects on other organs. In turn, substances produced primarily by organs such as bone marrow, adipose tissue, or the heart may have an impact on the metabolism and function and metabolism of the healthy and diseased brain. Despite a mounting amount of evidence supports such bidirectional communication between the brain and other organs, research on the function of molecular mediators carried by extracellular vesicles (EVs) is in the early stages. In addition to being able to target or reach practically any organ, EVs have the ability to cross the blood-brain barrier to transport a range of substances (lipids, peptides, proteins, and nucleic acids) to recipient cells, exerting biological effects. Here, we review the function of EVs in bidirectional communication between the brain and other organs. In a small number of cases, the role has been explicitly proven; yet, in most cases, it relies on indirect evidence from EVs in cell culture or animal models. There is a dearth of research currently available on the function of EVs-carrying mediators in the bidirectional communication between the brain and bone marrow, adipose tissue, liver, heart, lungs, and gut. Therefore, more studies are needed to determine how EVs facilitate communication between the brain and other organs.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Lihong Zhao
- Department of Radiotherapy, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130012, Jilin, China
| | - Zelu Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|