1
|
Ou X, Zhou J, Xie HY, Nie W. Fusogenic Lipid Nanovesicles as Multifunctional Immunomodulatory Platforms for Precision Solid Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503134. [PMID: 40351077 DOI: 10.1002/smll.202503134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Although immunotherapy demonstrates considerable prospect in overcoming solid tumors, its clinical efficacy is limited by several factors, such as poor tumor immunogenicity, inadequate immune activation, and immunosuppressive tumor microenvironment (TME). To overcome these challenges, a versatile and universal immune modulation platform should be developed, and lipid nanovesicles with membrane fusion capabilities (LNV-Fs) have attracted great attention for this purpose. By mimicking natural membrane fusion processes, LNV-Fs enable the precise presentation of immunogenic components on tumor cell membranes, effectively activating anti-tumor immune surveillance. Similarly, LNV-Fs can equip multiple functionalities on autologous and adoptive effector cells for enhanced cell therapies. Additionally, LNV-Fs function as vaccines that elicit robust autologous anti-tumor immunity while promoting long-term immune memory. Furthermore, different LNV-Fs with powerful ability in reprogramming TME have been reported. Given the recent advancements and the absence of comprehensive reviews on this topic, a comprehensive analysis of LNV-F systems, including their structural classifications, membrane fusion mechanisms, and recent applications in cancer immunotherapy is provided. Furthermore, the future prospects of LNV-Fs, with particular emphasis on artificial intelligence-assisted design are explored. This review is intended to engage researchers from diverse interdisciplinary fields and provide valuable insights for advancing precision immunotherapy.
Collapse
Affiliation(s)
- Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- Chemical Biology Center Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing, 100191, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
2
|
Zhao Q, Han Y, Gong W, Cao Z, Chang H, Gong S, Li Q, Li M, Ma C, He L, Zhou H. Membrane-Anchoring and Oxygen-Generating Mediated Nanosonosensitizer for Optimizing Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2404849. [PMID: 40129017 DOI: 10.1002/adhm.202404849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Despite its antitumor promise, sonodynamic therapy (SDT)'s efficacy in immune activation requires enhancement, primarily due to the hypoxic tumor microenvironment (TME) and insufficient targeting of sonosensitizers to specific subcellular regions. Herein, we developed macrophage membrane (MM)-intermingled membrane fusogenic liposomes (MFL) to optimize sonoimmunotherapy that encapsulate catalase (CAT) within the core and incorporate the sonosensitizer chlorin e6 (Ce6) in the outer shell (CAT@MM-MFL-Ce6). The MM confers immune evasion properties and promotes nanoparticles' targeted accumulation in tumor tissue. The membrane fusion effect enables Ce6 to anchor onto cancer cell membrane and facilitates the direct delivery of CAT into the cytoplasm, bypassing endosomal degradation. Upon ultrasound stimulation, generated reactive oxygen species directly damage the plasma membrane, initiating the Caspase 3/Gasdermin E-mediated pyroptosis pathway. Concurrently, the encapsulated CAT efficiently decompose H₂O₂ in the cytoplasm, thus enhancing local oxygen levels in hypoxic tumors. Contributed by these effects, the combination of nanosonosensitizer-augmented SDT and immune checkpoint agent successfully reverse the immunosuppressive TME, driving a potent immune response that inhibits primary tumor growth, distant metastasis, and lung metastases in an orthotopic triple-negative breast cancer model. This study demonstrates the potential of a novel SDT-based combinatorial approach to modulate immune-cold TMEs, advancing proof-of-concept tumor therapeutics.
Collapse
Affiliation(s)
- Qing Zhao
- Ultrasound Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Ye Han
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Wushuang Gong
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Zhiyue Cao
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, P. R. China
| | - Haonan Chang
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Shaofan Gong
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Qunying Li
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Mengmeng Li
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, P. R. China
| | - Chao Ma
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, P. R. China
| | - Hang Zhou
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| |
Collapse
|
3
|
Liu Y, Chen J, Tian J, Hao Y, Ma X, Zhou Y, Feng L. Engineered CAR-NK Cells with Tolerance to H2O2 and Hypoxia Can Suppress Postoperative Relapse of Triple-Negative Breast Cancers. Cancer Immunol Res 2024; 12:1574-1588. [PMID: 39023168 DOI: 10.1158/2326-6066.cir-23-1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Surgical resection is a primary treatment option for patients with triple-negative breast cancer (TNBC), but it is associated with a high rate of postoperative local and metastatic relapse. Although chimeric antigen receptor-engineered NK (CAR-NK) cell therapy can specifically recognize and eradicate tumor cells, its therapeutic potency toward TNBCs is markedly suppressed by the hostile tumor microenvironment, which restricts the infiltration, survival, and effector functions of CAR-NK cells inside tumor masses. In this study, HER1-overexpressing TNBC-targeted CAR-NK (HER1-CAR-NK) cells were genetically engineered with catalase to endow them with tolerance toward the high levels of oxidative stress and hypoxia inside TNBC tumors through the catalytic decomposition of hydrogen peroxide, which is a principle reactive oxygen species inside tumors, into O2. We refer to these cells as HER1-CAR-CAT-NK cells. Upon intratumoral fixation with an injectable alginate hydrogel, HER1-CAR-CAT-NK cells enabled sustained tumor hypoxia attenuation and exhibited markedly enhanced persistence and effector functions inside TNBC tumors. As a result, locoregional HER1-CAR-CAT-NK cell therapy not only inhibited the growth of local primary residual tumors but also elicited systemic antitumor activity to suppress the growth of distant tumors. This study highlights that genetic engineering of HER1-CAR-NK cells with catalase is a promising strategy to suppress the postoperative local and distant relapse of TNBC tumors.
Collapse
Affiliation(s)
- Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jiahui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jia Tian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, P. R. China
| | - Yu Hao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, P. R. China
| | - Xinxing Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Yehui Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Liangzhu Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, P. R. China
| |
Collapse
|
4
|
Ge D, An R, Xue L, Qiu M, Zhu Y, Wen G, Shi Y, Ren H, Li W, Wang J. Developing Cell-Membrane-Associated Liposomes for Liver Diseases. ACS NANO 2024; 18:29421-29438. [PMID: 39404084 DOI: 10.1021/acsnano.4c12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Over the past decade, a marked escalation in the prevalence of hepatic pathologies has been observed, adversely impacting the quality of life for many. The predominant therapeutic strategy for liver diseases has been pharmacological intervention; however, its efficacy is often constrained. Currently, liposomes are tiny structures that can deliver drugs directly to targeted areas, enhancing their effectiveness. Specifically, cell membrane-associated liposomes have gained significant attention. Despite this, there is still much to learn about the binding mechanism of this type of liposome. Thus, this review comprehensively summarizes relevant information on cell membrane-associated liposomes, including their clinical applications and future development directions. First, we will briefly introduce the composition and types of cell membrane-associated liposomes. We will provide an overview of their structure and discuss the various types of liposomes associated with cell membranes. Second, we will thoroughly discuss various strategies of drug delivery using these liposomes. Lastly, we will discuss the application and clinical challenges associated with using cell membrane-associated liposomes in treating liver diseases. We will explore their potential benefits while also addressing the obstacles that need to be overcome. Furthermore, we will provide prospects for future development in this field. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization.
Collapse
Affiliation(s)
- Dongxue Ge
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ran An
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yawen Zhu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| |
Collapse
|
5
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
6
|
Liu Y, Hao Y, Chen J, Chen M, Tian J, Lv X, Zhang Y, Ma X, Zhou Y, Feng L. An Injectable Puerarin Depot Can Potentiate Chimeric Antigen Receptor Natural Killer Cell Immunotherapy Against Targeted Solid Tumors by Reversing Tumor Immunosuppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307521. [PMID: 38212279 DOI: 10.1002/smll.202307521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Chimeric antigen receptor natural killer (CAR-NK) cell therapy represents a potent approach to suppressing tumor growth because it has simultaneously inherited the specificity of CAR and the intrinsic generality of NK cells in recognizing cancer cells. However, its therapeutic potency against solid tumors is still restricted by insufficient tumor infiltration, immunosuppressive tumor microenvironments, and many other biological barriers. Motivated by the high potency of puerarin, a traditional Chinese medicine extract, in dilating tumor blood vessels, an injectable puerarin depot based on a hydrogen peroxide-responsive hydrogel comprising poly(ethylene glycol) dimethacrylate and ferrous chloride is concisely developed. Upon intratumoral fixation, the as-prepared puerarin depot (abbreviated as puerarin@PEGel) can activate nitrogen oxide production inside endothelial cells and thus dilate tumor blood vessels to relieve tumor hypoxia and reverse tumor immunosuppression. Such treatment can thus promote tumor infiltration, survival, and effector functions of customized epidermal growth factor receptor (HER1)-targeted HER1-CAR-NK cells after intravenous administration. Consequently, such puerarin@PEGel-assisted HER1-CAR-NK cell treatment exhibits superior tumor suppression efficacy toward both HER1-overexpressing MDA-MB-468 and NCI-H23 human tumor xenografts in mice without inducing obvious side effects. This study highlights a potent strategy to activate CAR-NK cells for augmented treatment of targeted solid tumors through reprogramming tumor immunosuppression.
Collapse
Affiliation(s)
- Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jiahui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jia Tian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiang Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xinxing Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Yehui Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Ge J, Zhang Z, Zhao S, Chen Y, Min X, Cai Y, Zhao H, Wu X, Zhao F, Chen B. Nanomedicine-induced cell pyroptosis to enhance antitumor immunotherapy. J Mater Chem B 2024; 12:3857-3880. [PMID: 38563315 DOI: 10.1039/d3tb03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy is a therapeutic modality designed to elicit or augment an immune response against malignancies. Despite the immune system's ability to detect and eradicate neoplastic cells, certain neoplastic cells can elude immune surveillance and elimination through diverse mechanisms. Therefore, antitumor immunotherapy has emerged as a propitious strategy. Pyroptosis, a type of programmed cell death (PCD) regulated by Gasdermin (GSDM), is associated with cytomembrane rupture due to continuous cell expansion, which results in the release of cellular contents that can trigger robust inflammatory and immune responses. The field of nanomedicine has made promising progress, enabling the application of nanotechnology to enhance the effectiveness and specificity of cancer therapy by potentiating, enabling, or augmenting pyroptosis. In this review, we comprehensively examine the paradigms underlying antitumor immunity, particularly paradigms related to nanotherapeutics combined with pyroptosis; these treatments include chemotherapy (CT), hyperthermia therapy, photodynamic therapy (PDT), chemodynamic therapy (CDT), ion-interference therapy (IIT), biomimetic therapy, and combination therapy. Furthermore, we thoroughly discuss the coordinated mechanisms that regulate these paradigms. This review is expected to enhance the understanding of the interplay between pyroptosis and antitumor immunotherapy, broaden the utilization of diverse nanomaterials in pyroptosis-based antitumor immunotherapy, and facilitate advancements in clinical tumor therapy.
Collapse
Affiliation(s)
- Jingwen Ge
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Zheng Zhang
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Shuangshuang Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yanwei Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xin Min
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yun Cai
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Huajiao Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xincai Wu
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Feng Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| |
Collapse
|
8
|
Li J, Hu H, Lian K, Zhang D, Hu P, He Z, Zhang Z, Wang Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024; 10:e27196. [PMID: 38486782 PMCID: PMC10937699 DOI: 10.1016/j.heliyon.2024.e27196] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Various preclinical and a limited number of clinical studies of CAR-NK cells have shown promising results: efficient elimination of target cells without side effects similar to CAR-T therapy. However, the homing and infiltration abilities of CAR-NK cells are poor due to the inhibitory tumor microenvironment. From the perspective of clinical treatment strategies, combined with the biological and tumor microenvironment characteristics of NK cells, CAR-NK combination therapy strategies with anti-PD-1/PD-L1, radiotherapy and chemotherapy, kinase inhibitors, proteasome inhibitors, STING agonist, oncolytic virus, photothermal therapy, can greatly promote the proliferation, migration and cytotoxicity of the NK cells. In this review, we will summarize the targets selection, structure constructions and combinational therapies of CAR-NK cells for tumors to provide feasible combination strategies for overcoming the inhibitory tumor microenvironment and improving the efficacy of CAR-NK cells.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Hong Hu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhibing He
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong Wang
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| |
Collapse
|
9
|
Sun M, Yang J, Fan Y, Zhang Y, Sun J, Hu M, Sun K, Zhang J. Beyond Extracellular Vesicles: Hybrid Membrane Nanovesicles as Emerging Advanced Tools for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303617. [PMID: 37749882 PMCID: PMC10646251 DOI: 10.1002/advs.202303617] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Extracellular vesicles (EVs), involved in essential physiological and pathological processes of the organism, have emerged as powerful tools for disease treatment owing to their unique natural biological characteristics and artificially acquired advantages. However, the limited targeting ability, insufficient production yield, and low drug-loading capability of natural simplex EVs have greatly hindered their development in clinical translation. Therefore, the establishment of multifunctional hybrid membrane nanovesicles (HMNVs) with favorable adaptability and flexibility has become the key to expanding the practical application of EVs. This timely review summarizes the current progress of HMNVs for biomedical applications. Different HMNVs preparation strategies including physical, chemical, and chimera approaches are first discussed. This review then individually describes the diverse types of HMNVs based on homologous or heterologous cell membrane substances, a fusion of cell membrane and liposome, as well as a fusion of cell membrane and bacterial membrane. Subsequently, a specific emphasis is placed on the highlight of biological applications of the HMNVs toward various diseases with representative examples. Finally, ongoing challenges and prospects of the currently developed HMNVs in clinical translational applications are briefly presented. This review will not only stimulate broad interest among researchers from diverse disciplines but also provide valuable insights for the development of promising nanoplatforms in precision medicine.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yinfeng Zhang
- International Medical CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Jian Sun
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Min Hu
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Ke Sun
- Department of Urinary surgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
10
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
11
|
Tang Y, Qian C. Research progress in leveraging biomaterials for enhancing NK cell immunotherapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:267-278. [PMID: 37476938 PMCID: PMC10409897 DOI: 10.3724/zdxbyxb-2022-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Collapse
Affiliation(s)
- Yingqi Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| | - Chenggen Qian
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
| |
Collapse
|