1
|
Lan Y, Li S, Wang J, Yang X, Wang C, Huang M, Zhang R, Chen F, Li W. A novel compound, SYHA1813, inhibits malignant meningioma growth directly by boosting p53 pathway activation and impairing DNA repair. Front Oncol 2025; 15:1522249. [PMID: 40052125 PMCID: PMC11882425 DOI: 10.3389/fonc.2025.1522249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Meningioma is a common tumor of the central nervous system but effective therapies for malignant meningiomas are still lacking. Therefore, the development of novel therapeutic reagents is urgently needed. SYHA1813 is a novel compound and our previous study demonstrated its potent anti-tumor activity on glioblastoma through the inhibition of macrophages and human umbilical vein endothelial cells (HUVECs). However, the precise functional role of SYHA1813 in meningiomas remains unclear. Method We aimed to investigate the direct tumor-inhibitory effects of SYHA1813 on meningioma both in vitro and in vivo, and explore its potential molecular mechanisms. Results Our results showed that SYHA1813 suppressed the proliferation, colony formation, migration, and invasion of meningioma cells in vitro. Furthermore, we found SYHA1813 induced G2/M cell cycle arrest, apoptosis, and cellular senescence. Mechanistically, RNA-seq revealed that SYHA1813 activated the P53 pathway and impaired DNA repair. In vivo, SYHA1813 effectively inhibited the growth of meningioma xenografts in a mouse model. Additionally, in an ongoing first-inhuman phase I trial, this patient with recurrent meningioma provided preliminary clinical evidence supporting the anti-tumor activity of SYHA1813. Discussion This study unveiled a novel antitumor mechanism of SYHA1813, showing its ability to directly target and kill meningioma cells in vitro and in vivo. Our findings highlighted the promising potential of SYHA1813 as a therapeutic agent for treating malignant meningiomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Mann B, Artz N, Darawsheh R, Kram DE, Hingtgen S, Satterlee AB. Opportunities and challenges for patient-derived models of brain tumors in functional precision medicine. NPJ Precis Oncol 2025; 9:47. [PMID: 39953052 PMCID: PMC11828933 DOI: 10.1038/s41698-025-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Here, we review a growing paradigm shift from genomics-based precision medicine toward functional precision medicine, which evaluates therapeutic efficacy by directly treating living patient tumors ex vivo to better predict patient-specific responses to treatment. We discuss several classes of patient-derived models of central nervous system tumors, highlighting unique features of each. Each class of models holds promise to improve treatment selection, prolong survival, and enhance patient outcomes.
Collapse
Affiliation(s)
- Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichole Artz
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rami Darawsheh
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Zohdy YM, Jahangiri A, Jacob F, Aksionau A, Alawieh AM, Tong A, Chern B, Maldonado J, Hoang K, Nduom E, Howard BM, Barrow DL, Neill SG, Wen Z, Pradilla G, Garzon-Muvdi T. Patient-Derived Meningioma Organoids: A Reliable Model for Studying Human Tumor Pathophysiology. Cancers (Basel) 2025; 17:526. [PMID: 39941893 PMCID: PMC11817449 DOI: 10.3390/cancers17030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction: Meningiomas are the most common primary central nervous system tumors, constituting 39.7% of intracranial tumors. Although generally benign, some exhibit aggressive behavior and risk of recurrence, necessitating adjuvant therapy and repeat surgical interventions. Molecular studies have identified tumor-driving mutations, leading to targeted therapies and clinical trials. However, translating preclinical findings into clinical success is often hindered by limitations in current meningioma tumor models. This study aims to develop and validate a standardized protocol for establishing patient-derived meningioma organoids (MEN-Os) that faithfully replicate human disease. Methods: MEN-Os were successfully established from 15 meningioma samples (11 grade 1, 4 grade 2) from neurosurgical resections using an optimized culture protocol. Histological and immunohistochemical analyses were used to assess the resemblance of MEN-Os to original tumor tissues. RNA sequencing compared transcriptional signatures between MEN-Os and corresponding patient-resected tissues. Results: MEN-Os were successfully established from patient-resected samples and maintained in culture for up to four weeks, showing stable growth and structural integrity. Histopathological analysis revealed that MEN-Os preserved key architectural features, including cellular organization, nuclear morphology, and proliferation rates. Immunohistochemical staining for meningioma-specific markers, such as the progesterone receptor, confirmed similar expression patterns to parental tumors. Transcriptomic profiling demonstrated that MEN-Os retained the transcriptional signatures of original tissues, including genes associated with meningioma pathology (NF2, CDKN2A, TP53). Differential expression and deconvolution analyses showed that MEN-Os contained diverse cell populations, including tumor and stromal cells, while preserving the immune microenvironment, as validated by histopathological and transcriptomic profiling. Conclusion: We established a robust, reproducible protocol for generating MEN-Os, which faithfully replicates the histopathological, molecular, and cellular characteristics of original tumors. MEN-Os provide a valuable model for studying meningioma biology and evaluating therapeutic strategies.
Collapse
Affiliation(s)
- Youssef M. Zohdy
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Arman Jahangiri
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Fadi Jacob
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | | | - Ali M. Alawieh
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Amelia Tong
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Bethany Chern
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Justin Maldonado
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Kimberly Hoang
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Edjah Nduom
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Brian M. Howard
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Daniel L. Barrow
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Stewart G. Neill
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Gustavo Pradilla
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.M.Z.)
| |
Collapse
|
4
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
5
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, The International Consortium on Meningiomas (ICOM), Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Reuvers TGA, Grandia V, Brandt RMC, Arab M, Maas SLN, Bos EM, Nonnekens J. Investigating the Radiobiological Response to Peptide Receptor Radionuclide Therapy Using Patient-Derived Meningioma Spheroids. Cancers (Basel) 2024; 16:2515. [PMID: 39061156 PMCID: PMC11275064 DOI: 10.3390/cancers16142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept of a meningioma patient-derived 3D culture model to assess the short-term response to radiation therapies such as PRRT and external beam radiotherapy (EBRT). We established short-term cultures (1 week) for 16 meningiomas with high efficiency and yield. In general, meningioma spheroids retained characteristics of the parental tumor during the initial days of culturing. For a subset of tumors, clear changes towards a more aggressive phenotype were visible over time, indicating that the culture method induced dedifferentiation of meningioma cells. To assess PRRT efficacy, we demonstrated specific uptake of 177Lu-DOTA-TATE via somatostatin receptor subtype 2 (SSTR2), which was highly overexpressed in the majority of tumor samples. PRRT induced DNA damage which was detectable for an extended timeframe as compared to EBRT. Interestingly, levels of DNA damage in spheroids after PRRT correlated with SSTR2-expression levels of parental tumors. Our patient-derived meningioma culture model can be used to assess the short-term response to PRRT and EBRT in radiobiological studies. Further improvement of this model should pave the way towards the development of a relevant culture model for assessment of the long-term response to radiation and, potentially, individual patient responses to PRRT and EBRT.
Collapse
Affiliation(s)
- Thom G A Reuvers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vivian Grandia
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Majd Arab
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
8
|
Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG. Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids. Int J Mol Sci 2024; 25:1014. [PMID: 38256087 PMCID: PMC10815694 DOI: 10.3390/ijms25021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| |
Collapse
|
9
|
van de Weijer LL, Ercolano E, Zhang T, Shah M, Banton MC, Na J, Adams CL, Hilton D, Kurian KM, Hanemann CO. A novel patient-derived meningioma spheroid model as a tool to study and treat epithelial-to-mesenchymal transition (EMT) in meningiomas. Acta Neuropathol Commun 2023; 11:198. [PMID: 38102708 PMCID: PMC10725030 DOI: 10.1186/s40478-023-01677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Meningiomas are the most common intracranial brain tumours. These tumours are heterogeneous and encompass a wide spectrum of clinical aggressivity. Treatment options are limited to surgery and radiotherapy and have a risk of post-operative morbidities and radiation neurotoxicity, reflecting the need for new therapies. Three-dimensional (3D) patient-derived cell culture models have been shown to closely recapitulate in vivo tumour biology, including microenvironmental interactions and have emerged as a robust tool for drug development. Here, we established a novel easy-to-use 3D patient-derived meningioma spheroid model using a scaffold-free approach. Patient-derived meningioma spheroids were characterised and compared to patient tissues and traditional monolayer cultures by histology, genomics, and transcriptomics studies. Patient-derived meningioma spheroids closely recapitulated morphological and molecular features of matched patient tissues, including patient histology, genomic alterations, and components of the immune microenvironment, such as a CD68 + and CD163 + positive macrophage cell population. Comprehensive transcriptomic profiling revealed an increase in epithelial-to-mesenchymal transition (EMT) in meningioma spheroids compared to traditional monolayer cultures, confirming this model as a tool to elucidate EMT in meningioma. Therefore, as proof of concept study, we developed a treatment strategy to target EMT in meningioma. We found that combination therapy using the MER tyrosine kinase (MERTK) inhibitor UNC2025 and the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) effectively decreased meningioma spheroid viability and proliferation. Furthermore, we demonstrated this combination therapy significantly increased the expression of the epithelial marker E-cadherin and had a repressive effect on WHO grade 2-derived spheroid invasion, which is suggestive of a partial reversal of EMT in meningioma spheroids.
Collapse
Affiliation(s)
- Laurien L van de Weijer
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Emanuela Ercolano
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Ting Zhang
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Maryam Shah
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Matthew C Banton
- Faculty of Health: School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Juri Na
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Claire L Adams
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - David Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, Devon, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB, UK
| | - C Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK.
| |
Collapse
|
10
|
Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, Ferreira T, Bharadwaj HR, Shet V, Kundu M, Yee ALW, Abdul-Rahman T, Atallah O. The molecular landscape of neurological disorders: insights from single-cell RNA sequencing in neurology and neurosurgery. Eur J Med Res 2023; 28:529. [PMID: 37974227 PMCID: PMC10652629 DOI: 10.1186/s40001-023-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
Collapse
Affiliation(s)
- Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | | | - Shankaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | - Toufik Abdul-Rahman
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
11
|
Zou Z, Lin Z, Wu C, Tan J, Zhang J, Peng Y, Zhang K, Li J, Wu M, Zhang Y. Micro-Engineered Organoid-on-a-Chip Based on Mesenchymal Stromal Cells to Predict Immunotherapy Responses of HCC Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302640. [PMID: 37485650 PMCID: PMC10520686 DOI: 10.1002/advs.202302640] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Patient-derived organoid (PDO) has great potential in precision oncology, but low success rate, time-consuming culture, and lack of tumor microenvironment (TME) limit its application. Mesenchymal stromal cells (MSC) accumulate in primary site to support tumor growth and recruit immune cells to form TME. Here, MSC and peripheral blood mononuclear cells (PBMC) coculture is used to construct HCC organoid-on-a-chip mimicking original TME and provide a high-throughput drug-screening platform to predict outcomes of anti-HCC immunotherapies. HCC-PDOs and PBMC are co-cultured with MSC and Cancer-associated fibroblasts (CAF). MSC increases success rate of biopsy-derived PDO culture, accelerates PDO growth, and promotes monocyte survival and differentiation into tumor-associated macrophages. A multi-layer microfluidic chip is designed to achieve high-throughput co-culture for drug screening. Compared to conventional PDOs, MSC-PDO-PBMC and CAF-PDO-PBMC models show comparable responses to chemotherapeutic or targeted anti-tumor drugs but more precise prediction potential in assessing patients' responses to anti-PD-L1 drugs. Moreover, this microfluidic platform shortens PDO growth time and improves dimensional uniformity of organoids. In conclusion, the study successfully constructs microengineered organoid-on-a-chip to mimic TME for high-throughput drug screening, providing novel platform to predict immunotherapy response of HCC patients.
Collapse
Affiliation(s)
- Zhengyu Zou
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Zhun Lin
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Chenglin Wu
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jizhou Tan
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jie Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yanwen Peng
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510635China
| | - Kunsong Zhang
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiaping Li
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Minhao Wu
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yuanqing Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|