1
|
Hwangbo H, Koo Y, Nacionales F, Kim J, Chae S, Kim GH. Stimulus-assisted in situ bioprinting: advancing direct bench-to-bedside delivery. Trends Biotechnol 2025; 43:1015-1030. [PMID: 39643527 DOI: 10.1016/j.tibtech.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
The fabrication of 3D bioconstructs using bioprinters will advance the field of regenerative medicine owing to its ability to facilitate clinical treatments. Additional stimulations have been applied to the bioconstructs to guide cells laden in the bioconstructs. However, the conventional bench-to-bedside delivery based on separate bioprinting and biostimulating processes may increase the risks of contamination and shape discordance owing to the considerably long process involved. In situ bioprinting is aimed at eliminating these risks, but stimulation strategies implied during in situ printing have not yet been extensively reviewed. Here, we present the concept of stimulus-assisted in situ bioprinting, which integrates the printing and biostimulation processes by directly applying stimuli to the bioink during fabrication.
Collapse
Affiliation(s)
- Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - YoungWon Koo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Francis Nacionales
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - JuYeon Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - SooJung Chae
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Su Y, Ju J, Shen C, Li Y, Yang W, Luo X, Wang Z, Zeng J, Liu L. In situ 3D bioprinted GDMA/Prussian blue nanozyme hydrogel with wet adhesion promotes macrophage phenotype modulation and intestinal defect repair. Mater Today Bio 2025; 31:101636. [PMID: 40161927 PMCID: PMC11950758 DOI: 10.1016/j.mtbio.2025.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Developing hydrogels with wet-adhesion, immunomodulation and regenerative repair capabilities in intestinal repair remains a formidable challenge. In the present study, the development of an anti-inflammatory, wet-adhesive, decellularized extracellular matrix hydrogel produced using three-dimensional (3D) -printing technology is presented. This hydrogel, which integrates gelatin and dopamine, was demonstrated to display excellent wet-adhesion properties, fully harnessing the outstanding regenerative potential of the decellularized small-intestine matrix. Furthermore, the integration of Prussian Blue nanozymes imparted significant anti-inflammatory and antioxidant properties. Through modulating macrophage polarization, the hydrogel was not only found to enhance tissue repair, but also to substantially mitigate inflammation. In vivo experiments (namely, histopathological analyses using a rat model) demonstrated that this hydrogel was able to effectively enhance tissue regeneration and healing in models of intestinal damage. In conclusion, through the utilization of 3D-printing technology, the present study has shown that the precise manufacturing and customization of the hydrogel to various shapes and sizes of intestinal defects may be executed, thereby providing an innovative strategy for intestinal repair. This advanced hydrogel has therefore been shown to hold significant promise as a bioadhesive for both emergency repair and regenerative therapy.
Collapse
Affiliation(s)
- Yang Su
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingyi Ju
- Department of Plastic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chentao Shen
- Department of Plastic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqi Li
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wangshuo Yang
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenxing Wang
- Department of Plastic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: From bench to bedside. Bioact Mater 2025; 45:201-230. [PMID: 39651398 PMCID: PMC11625302 DOI: 10.1016/j.bioactmat.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 12/11/2024] Open
Abstract
In recent decades, 3D bioprinting has garnered significant research attention due to its ability to manipulate biomaterials and cells to create complex structures precisely. However, due to technological and cost constraints, the clinical translation of 3D bioprinted products (BPPs) from bench to bedside has been hindered by challenges in terms of personalization of design and scaling up of production. Recently, the emerging applications of artificial intelligence (AI) technologies have significantly improved the performance of 3D bioprinting. However, the existing literature remains deficient in a methodological exploration of AI technologies' potential to overcome these challenges in advancing 3D bioprinting toward clinical application. This paper aims to present a systematic methodology for AI-driven 3D bioprinting, structured within the theoretical framework of Quality by Design (QbD). This paper commences by introducing the QbD theory into 3D bioprinting, followed by summarizing the technology roadmap of AI integration in 3D bioprinting, including multi-scale and multi-modal sensing, data-driven design, and in-line process control. This paper further describes specific AI applications in 3D bioprinting's key elements, including bioink formulation, model structure, printing process, and function regulation. Finally, the paper discusses current prospects and challenges associated with AI technologies to further advance the clinical translation of 3D bioprinting.
Collapse
Affiliation(s)
- Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
4
|
Dehli F, O'Dwyer Lancaster-Jones O, Duarte Campos D. Optimizing the value of bioinks and robotics to advance in vivo bioprinting. Curr Opin Biotechnol 2025; 91:103251. [PMID: 39793264 DOI: 10.1016/j.copbio.2024.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
In vivo bioprinting strategies aim at facilitating immediate integration of engineered tissues with the host's biological system. As integral parts of current bioprinting technologies, bioinks and robotics should be holistically considered for new biomedical applications. This implies that chosen bioinks should exhibit rheological properties that are compatible with the fabrication method and vice versa, bioprinting tools might need to be redesigned and reconstructed to fit the characteristics of the needed bioinks that after solidification act as supporting matrices for living cells. In this piece, we identify current challenges in merging the best of these two principles, we highlight relevant studies that have addressed this need, and we propose ideas how to approach this challenge in the next years.
Collapse
Affiliation(s)
- Friederike Dehli
- Bioprinting & Tissue Engineering Group, ZMBH Institute for Molecular Biology, Heidelberg University, Germany
| | | | - Daniela Duarte Campos
- Bioprinting & Tissue Engineering Group, ZMBH Institute for Molecular Biology, Heidelberg University, Germany.
| |
Collapse
|
5
|
Kim J, Jeong SH, Thibault BC, Soto JAL, Tetsuka H, Devaraj SV, Riestra E, Jang Y, Seo JW, Rodríguez RAC, Huang LL, Lee Y, Preda I, Sonkusale S, Fiondella L, Seo J, Pirrami L, Shin SR. Large Scale Ultrafast Manufacturing of Wireless Soft Bioelectronics Enabled by Autonomous Robot Arm Printing Assisted by a Computer Vision-Enabled Guidance System for Personalized Wound Healing. Adv Healthc Mater 2025; 14:e2401735. [PMID: 39544116 PMCID: PMC11695167 DOI: 10.1002/adhm.202401735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/21/2024] [Indexed: 11/17/2024]
Abstract
A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds. The size of electrodes and the geometries of power-receiving coil are essential components of the CARE and are determined by a MATLAB simulation, ensuring efficient wireless power transfer. Three heterogeneous inks possessing different rheological behaviors can be extruded and printed sequentially on the flexible substrates, supporting fast manufacturing of large customized bioelectronic patches. CARE can stimulate wounds up to 10 mm in depth with an electric field strength of 88.8 mV mm-1. In vitro studies reveal the ability to accelerate cell migration by a factor of 1.6 and 1.9 for human dermal fibroblasts and human umbilical vein endothelial cells, respectively. This study highlights the potential of CARE as a clinical wound therapy method to accelerate healing.
Collapse
Affiliation(s)
- Jihyun Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
| | - Brendan Craig Thibault
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Department of Electrical and Computer Engineering, University of Massachusetts- Dartmouth, Dartmouth, MA, 02747, USA
| | - Javier Alejandro Lozano Soto
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
| | - Hiroyuki Tetsuka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Research Strategy Office, Toyota Research Institute of North America Toyota Motor North America, 1555 Woodridge Avenue, Ann Arbor, MI, 48105, USA
| | - Surya Varchasvi Devaraj
- Electrical Engineering Department, Indian Institute of Technology Bombay India
- Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Estefania Riestra
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias Campus Monterrey, Av. Eugenio Garza Sada 2501, Col. Tecnológico C.P. Monterrey, Nuevo León, 64700, Mexico
| | - Yeongseok Jang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong Wook Seo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
| | - Rafael Alejandro Cornejo Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias Campus Monterrey, Av. Eugenio Garza Sada 2501, Col. Tecnológico C.P. Monterrey, Nuevo León, 64700, Mexico
| | - Lucia L Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Accelerated Medical Innovation and Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Accelerated Medical Innovation and Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ioana Preda
- iPrint Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, 1700, Switzerland
| | - Sameer Sonkusale
- Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Lance Fiondella
- Department of Electrical and Computer Engineering, University of Massachusetts- Dartmouth, Dartmouth, MA, 02747, USA
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Lorenzo Pirrami
- iSIS Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, 1700, Switzerland
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
| |
Collapse
|
6
|
Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, Chen F, Ozbolat IT, Yu Y. Progress in Organ Bioprinting for Regenerative Medicine. ENGINEERING 2024; 42:121-142. [DOI: 10.1016/j.eng.2024.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Nguyen CC, Hoang TT, Davies J, Phan PT, Thai MT, Nicotra E, Abed AA, Tran HA, Truong TA, Sharma B, Ji A, Zhu K, Wang CH, Phan H, Lovell NH, Do TN. Soft Fibrous Syringe Architecture for Electricity-Free and Motorless Control of Flexible Robotic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405610. [PMID: 39159303 PMCID: PMC11497036 DOI: 10.1002/advs.202405610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Flexible robotic systems (FRSs) and wearable user interfaces (WUIs) have been widely used in medical fields, offering lower infection risk and shorter recovery, and supporting amiable human-machine interactions (HMIs). Recently, soft electric, thermal, magnetic, and fluidic actuators with enhanced safety and compliance have innovatively boosted the use of FRSs and WUIs across many sectors. Among them, soft hydraulic actuators offer great speed, low noise, and high force density. However, they currently require bulky electric motors/pumps, pistons, valves, rigid accessories, and complex controllers, which inherently result in high cost, low adaptation, and complex setups. This paper introduces a novel soft fibrous syringe architecture (SFSA) consisting of two or more hydraulically connected soft artificial muscles that enable electricity-free actuation, motorless control, and built-in sensing ability for use in FRSs and WUIs. Its capabilities are experimentally demonstrated with various robotic applications including teleoperated flexible catheters, cable-driven continuum robotic arms, and WUIs. In addition, its sensing abilities to detect passive and active touch, surface texture, and object stiffness are also proven. These excellent results demonstrate a high feasibility of using a current-free and motor-less control approach for the FRSs and WUIs, enabling new methods of sensing and actuation across the robotic field.
Collapse
Affiliation(s)
- Chi Cong Nguyen
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Trung Thien Hoang
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - James Davies
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
- College of Engineering and Computer ScienceVinUniversityHanoi100000Vietnam
| | - Emanuele Nicotra
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Amr Al Abed
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Hien A. Tran
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Thanh An Truong
- School of Mechanical and Manufacturing EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Bibhu Sharma
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Adrienne Ji
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Kefan Zhu
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Chun Hui Wang
- School of Mechanical and Manufacturing EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Hoang‐Phuong Phan
- School of Mechanical and Manufacturing EngineeringFaculty of EngineeringUNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Nigel Hamilton Lovell
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| | - Thanh Nho Do
- Graduate School of Biomedical EngineeringFaculty of Engineering and Tyree Institute of Health Engineering (IHealthE)UNSW SydneyKensington CampusSydneyNSW2052Australia
| |
Collapse
|
9
|
Wang Z, Lin L, Li X, Zhang Q, Mi X, Xu B, Xu Y, Liu T, Shen Y, Wang Z, Xie N, Wang J. Improving Thermosensitive Bioink Scaffold Fabrication with a Temperature-Regulated Printhead in Robot-Assisted In Situ Bioprinting System. ACS OMEGA 2024; 9:40618-40631. [PMID: 39371970 PMCID: PMC11447728 DOI: 10.1021/acsomega.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
In situ bioprinting enables precise 3D printing inside the human body using modified bioprinters with thermosensitive bioinks such as gelatin methacrylate (GelMA). However, these devices lack refined temperature-regulated mechanisms essential for ensuring bioink viscosity, as compared to traditional bio-3D printers. Addressing this challenge, this study presents a temperature-regulated printhead designed to improve the fabrication of thermosensitive bioink scaffolds in in situ bioprinting, integrated into a UR5 robotic arm. Featuring a closed-loop system, it achieves a temperature steady error of 1 °C and a response time of approximately 1 min. The effectiveness of the printer was validated by bioprinting multilayer lattice 3D bioscaffolds. Comparisons were made with or without temperature control using different concentrations of GelMA + LAP. The deformation of the bioscaffolds under both conditions was analyzed, and cell culture tests were conducted to verify viability. Additionally, the rheology and mechanical properties of GelMA were tested. A final preliminary in situ bioprinting experiment was conducted on a model of a damaged femur to demonstrate practical application. The fabrication of this printhead is entirely open source, facilitating easy modifications to accommodate various robotic arms. We encourage readers to advance this prototype for application in increasingly complex in situ bioprinting situations, especially those utilizing thermosensitive bioinks.
Collapse
Affiliation(s)
- Zitong Wang
- Department
of Biomedical Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Li Lin
- Shanghai
Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiangyu Li
- Department
of Mechanical, School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Quan Zhang
- School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu Province, China
| | - Xuelian Mi
- Institute
of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 611756, Sichuan Province, China
| | - Bide Xu
- Innovative
Medical Device Registration Research and Clinical Transformation Service
Center, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanjing Xu
- Department
of Biomedical Instrument, Institute of Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongyou Liu
- Department
of Biomedical Instrument, Institute of Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuling Shen
- School
of Future Science and Engineering, Soochow
University, Soochow 215021, Jiangsu Province, China
| | - Zan Wang
- Department
of Mechanical, School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Neng Xie
- Department
of Biomedical Manufacturing and Engineering, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinwu Wang
- Shanghai
Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
10
|
Liu S, Chen Y, Wang Z, Liu M, Zhao Y, Tan Y, Qu Z, Du L, Wu C. The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives. MedComm (Beijing) 2024; 5:e753. [PMID: 39314888 PMCID: PMC11417428 DOI: 10.1002/mco2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioprinting is a highly promising application area of additive manufacturing technology that has been widely used in various fields, including tissue engineering, drug screening, organ regeneration, and biosensing. Its primary goal is to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices through software-layered discrete and numerical control molding. Despite its immense potential, bioprinting technology still faces several challenges. It requires concerted efforts from researchers, engineers, regulatory bodies, and industry stakeholders are principal to overcome these challenges and unlock the full potential of bioprinting. This review systematically discusses bioprinting principles, applications, and future perspectives while also providing a topical overview of research progress in bioprinting over the past two decades. The most recent advancements in bioprinting are comprehensively reviewed here. First, printing techniques and methods are summarized along with advancements related to bioinks and supporting structures. Second, interesting and representative cases regarding the applications of bioprinting in tissue engineering, drug screening, organ regeneration, and biosensing are introduced in detail. Finally, the remaining challenges and suggestions for future directions of bioprinting technology are proposed and discussed. Bioprinting is one of the most promising application areas of additive manufacturing technology that has been widely used in various fields. It aims to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices. This review systematically discusses bioprinting principles, applications, and future perspectives, which provides a topical description of the research progress of bioprinting.
Collapse
Affiliation(s)
- Shuge Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yating Chen
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhiyao Wang
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Minggao Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yundi Zhao
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yushuo Tan
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhan Qu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Liping Du
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Chunsheng Wu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| |
Collapse
|
11
|
Li S, Zhang H, Sun L, Zhang X, Guo M, Liu J, Wang W, Zhao N. 4D printing of biological macromolecules employing handheld bioprinters for in situ wound healing applications. Int J Biol Macromol 2024; 280:135999. [PMID: 39326614 DOI: 10.1016/j.ijbiomac.2024.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In situ bioprinting may be preferred over standard in vitro bioprinting in specific cases when de novo tissues are to be created directly on the appropriate anatomical region in the live organism, employing the body as a bioreactor. So far, few efforts have been made to create in situ tissues that can be safely halted and immobilized during printing in preclinical live animals. However, the technique has to be improved significantly in order to manufacture complex tissues in situ, which may be attainable in the future thanks to multidisciplinary advances in tissue engineering. Thanks to the biological macromolecules, natural and synthetic hydrogels and polymers are among the most used biomaterials in in situ bioprinting procedure. Bioprinters, which encounter multiple challenges, including cross-linking the printed structure, adjusting the rheology parameters, and printing various constructs. The introduction of handheld 3D and 4D bioprinters might potentially overcome the difficulties and problems associated with using traditional bioprinters. Studies showed that this technique could be efficient in wound healing and skin tissue regeneration. This study aims to analyze the benefits and difficulties associated with materials in situ 4D printing via handheld bioprinters.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Hongyang Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Lei Sun
- Department of Thoracic surgery, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Xinyue Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Meiqi Guo
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Jingyang Liu
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| |
Collapse
|
12
|
Chen H, Zhang B, Huang J. Recent advances and applications of artificial intelligence in 3D bioprinting. BIOPHYSICS REVIEWS 2024; 5:031301. [PMID: 39036708 PMCID: PMC11260195 DOI: 10.1063/5.0190208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
3D bioprinting techniques enable the precise deposition of living cells, biomaterials, and biomolecules, emerging as a promising approach for engineering functional tissues and organs. Meanwhile, recent advances in 3D bioprinting enable researchers to build in vitro models with finely controlled and complex micro-architecture for drug screening and disease modeling. Recently, artificial intelligence (AI) has been applied to different stages of 3D bioprinting, including medical image reconstruction, bioink selection, and printing process, with both classical AI and machine learning approaches. The ability of AI to handle complex datasets, make complex computations, learn from past experiences, and optimize processes dynamically makes it an invaluable tool in advancing 3D bioprinting. The review highlights the current integration of AI in 3D bioprinting and discusses future approaches to harness the synergistic capabilities of 3D bioprinting and AI for developing personalized tissues and organs.
Collapse
Affiliation(s)
| | - Bin Zhang
- Department of Mechanical and Aerospace Engineering, Brunel University London, London, United Kingdom
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
13
|
Mina M, Wu KY, Kalevar A, Tran SD. In Situ Bioprinting. 3D BIOPRINTING FROM LAB TO INDUSTRY 2024:347-390. [DOI: 10.1002/9781119894407.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Tang J, Dong Y, Cai L, Zhu Q, Shi J. Conformal 3D Printing Algorithm for Surfaces and Its In Situ Repair Applications. MICROMACHINES 2024; 15:920. [PMID: 39064431 PMCID: PMC11279153 DOI: 10.3390/mi15070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Conformal 3D printing can construct specific three-dimensional structures on the free-form surfaces of target objects, achieving in situ additive manufacturing and repair, making it one of the cutting-edge technologies in the current field of 3D printing. To further improve the repair efficacy in tissue engineering, this study proposes a conformal path planning algorithm for in situ printing in specific areas of the target object. By designing the conformal 3D printing algorithm and utilizing vector projection and other methods, coordinate transformation of the printing trajectory was achieved. The algorithm was validated, showing good adherence of the printing material to the target surface. In situ repair experiments were also conducted on human hands and pig tibia defect models, verifying the feasibility of this method and laying a foundation for further research in personalized medicine and tissue repair.
Collapse
Affiliation(s)
- Jundong Tang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (J.T.); (Y.D.); (L.C.); (Q.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yongli Dong
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (J.T.); (Y.D.); (L.C.); (Q.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lixiang Cai
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (J.T.); (Y.D.); (L.C.); (Q.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qian Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (J.T.); (Y.D.); (L.C.); (Q.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (J.T.); (Y.D.); (L.C.); (Q.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
16
|
Debbi L, Machour M, Dahis D, Shoyhet H, Shuhmaher M, Potter R, Tabory Y, Goldfracht I, Dennis I, Blechman T, Fuchs T, Azhari H, Levenberg S. Ultrasound Mediated Polymerization for Cell Delivery, Drug Delivery, and 3D Printing. SMALL METHODS 2024; 8:e2301197. [PMID: 38376006 DOI: 10.1002/smtd.202301197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Safe and accurate in situ delivery of biocompatible materials is a fundamental requirement for many biomedical applications. These include sustained and local drug release, implantation of acellular biocompatible scaffolds, and transplantation of cells and engineered tissues for functional restoration of damaged tissues and organs. The common practice today includes highly invasive operations with major risks of surgical complications including adjacent tissue damage, infections, and long healing periods. In this work, a novel non-invasive delivery method is presented for scaffold, cells, and drug delivery deep into the body to target inner tissues. This technology is based on acousto-sensitive materials which are polymerized by ultrasound induction through an external transducer in a rapid and local fashion without additional photoinitiators or precursors. The applicability of this technology is demonstrated for viable and functional cell delivery, for drug delivery with sustained release profiles, and for 3D printing. Moreover, the mechanical properties of the delivered scaffold can be tuned to the desired target tissue as well as controlling the drug release profile. This promising technology may shift the paradigm for local and non-invasive material delivery approach in many clinical applications as well as a new printing method - "acousto-printing" for 3D printing and in situ bioprinting.
Collapse
Affiliation(s)
- Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Daniel Dahis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hagit Shoyhet
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ruth Potter
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Tabory
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Idit Goldfracht
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Itiel Dennis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tom Blechman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Theodor Fuchs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Haim Azhari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
17
|
Kang SW, Mueller J. Multiscale 3D printing via active nozzle size and shape control. SCIENCE ADVANCES 2024; 10:eadn7772. [PMID: 38838136 DOI: 10.1126/sciadv.adn7772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Three-dimensional (3D) printers extruding filaments through a fixed nozzle encounter a conflict between high resolution, requiring small diameters, and high speed, requiring large diameters. This limitation is especially pronounced in multiscale architectures featuring both bulk and intricate elements. Here, we introduce adaptive nozzle 3D printing (AN3DP), a technique enabling dynamic alteration of nozzle diameter and cross-sectional shape during printing. The AN3DP nozzle consists of eight independently controllable, tendon-driven pins arrayed around a flexible, pressure-resistant membrane. The design incorporates a tapered angle optimized for extruding shear-thinning inks and a pointed tip suitable for constrained-space printing, such as conformal and embedded printing. AN3DP's efficacy is demonstrated through the fabrication of components with continuous gradients, eliminating the need for discretization, and achieving enhanced density and contour precision compared to traditional 3D printing methods. This platform substantially expands the scope of extrusion-based 3D printers, thus facilitating diverse applications, including bioprinting cell-laden and hierarchical implants with bone-like microarchitecture.
Collapse
Affiliation(s)
- Seok Won Kang
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Wang F, Song P, Wang J, Wang S, Liu Y, Bai L, Su J. Organoid bioinks: construction and application. Biofabrication 2024; 16:032006. [PMID: 38697093 DOI: 10.1088/1758-5090/ad467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.
Collapse
Affiliation(s)
- Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Jian Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Sicheng Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200444, People's Republic of China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, People's Republic of China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
19
|
Qiu Y, Ashok A, Nguyen CC, Yamauchi Y, Do TN, Phan HP. Integrated Sensors for Soft Medical Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308805. [PMID: 38185733 DOI: 10.1002/smll.202308805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.
Collapse
Affiliation(s)
- Yulin Qiu
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
- Department of Materials Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Li Z, Song P, Li G, Han Y, Ren X, Bai L, Su J. AI energized hydrogel design, optimization and application in biomedicine. Mater Today Bio 2024; 25:101014. [PMID: 38464497 PMCID: PMC10924066 DOI: 10.1016/j.mtbio.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Traditional hydrogel design and optimization methods usually rely on repeated experiments, which is time-consuming and expensive, resulting in a slow-moving of advanced hydrogel development. With the rapid development of artificial intelligence (AI) technology and increasing material data, AI-energized design and optimization of hydrogels for biomedical applications has emerged as a revolutionary breakthrough in materials science. This review begins by outlining the history of AI and the potential advantages of using AI in the design and optimization of hydrogels, such as prediction and optimization of properties, multi-attribute optimization, high-throughput screening, automated material discovery, optimizing experimental design, and etc. Then, we focus on the various applications of hydrogels supported by AI technology in biomedicine, including drug delivery, bio-inks for advanced manufacturing, tissue repair, and biosensors, so as to provide a clear and comprehensive understanding of researchers in this field. Finally, we discuss the future directions and prospects, and provide a new perspective for the research and development of novel hydrogel materials for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
21
|
Górnicki T, Lambrinow J, Golkar-Narenji A, Data K, Domagała D, Niebora J, Farzaneh M, Mozdziak P, Zabel M, Antosik P, Bukowska D, Ratajczak K, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Biomimetic Scaffolds-A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:531. [PMID: 38535679 PMCID: PMC10974775 DOI: 10.3390/nano14060531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025]
Abstract
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Jakub Lambrinow
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 6193673111, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructure Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
22
|
Zhao S, Nguyen CC, Hoang TT, Do TN, Phan HP. Transparent Pneumatic Tactile Sensors for Soft Biomedical Robotics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5671. [PMID: 37420836 DOI: 10.3390/s23125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Palpation is a simple but effective method to distinguish tumors from healthy tissues. The development of miniaturized tactile sensors embedded on endoscopic or robotic devices is key to achieving precise palpation diagnosis and subsequent timely treatment. This paper reports on the fabrication and characterization of a novel tactile sensor with mechanical flexibility and optical transparency that can be easily mounted on soft surgical endoscopes and robotics. By utilizing the pneumatic sensing mechanism, the sensor offers a high sensitivity of 1.25 mbar and negligible hysteresis, enabling the detection of phantom tissues with different stiffnesses ranging from 0 to 2.5 MPa. Our configuration, combining pneumatic sensing and hydraulic actuating, also eliminates electrical wiring from the functional elements located at the robot end-effector, thereby enhancing the system safety. The optical transparency path in the sensors together with its mechanical sensing capability open interesting possibilities in the early detection of solid tumor as well as in the development of all-in-one soft surgical robots that can perform visual/mechanical feedback and optical therapy.
Collapse
Affiliation(s)
- Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Chi Cong Nguyen
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Trung Thien Hoang
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Han JJ. Three-dimensional bioprinting of artificial organs-How close are we to its clinical application? Artif Organs 2023. [PMID: 37114874 DOI: 10.1111/aor.14551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A patient recently received a 3D-printed outer ear made out of her own cells. An endoscopic 3D bioprinter was able to print biomaterials in situ. In this decade, we may at last see the application of 3D bioprinters in the creation of complex, clinically viable artificial organs.
Collapse
|