1
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Ramos A, Angel VG, Siqueiros M, Sahagun T, Gonzalez L, Ballesteros R. Reviewing Additive Manufacturing Techniques: Material Trends and Weight Optimization Possibilities Through Innovative Printing Patterns. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1377. [PMID: 40141660 PMCID: PMC11943502 DOI: 10.3390/ma18061377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
Additive manufacturing is transforming modern industries by enabling the production of lightweight, complex structures while minimizing material waste and energy consumption. This review explores its evolution, covering historical developments, key technologies, and emerging trends. It highlights advancements in material innovations, including metals, polymers, composites, and ceramics, tailored to enhance mechanical properties and expand functional applications. Special emphasis is given to bioinspired designs and their contribution to enhancing structural efficiency. Additionally, the potential of these techniques for sustainable manufacturing and industrial scalability is discussed. The findings contribute to a broader understanding of Additive Manufacturing's impact on design optimization and material performance, offering insights into future research and industrial applications.
Collapse
Affiliation(s)
- Arturo Ramos
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Virginia G. Angel
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Miriam Siqueiros
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Thaily Sahagun
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Luis Gonzalez
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, BC, Mexico; (A.R.); (M.S.); (T.S.); (L.G.)
| | - Rogelio Ballesteros
- Honeywell Aerospace, ETS (Engineering Test Services) Materials Laboratory, Col. Parque el Vigía No. 2, Mexicali 21395, BC, Mexico;
| |
Collapse
|
3
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
4
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|