1
|
Dong X, Shi W, Wang G, Chen J, Wang R, Zhang J. Dual-Ligand Strategy to Construct Metal Organic Gel Catalyst with the Optimized Electronic Structure for High-Efficiency Overall Water Splitting and Flexible Metal-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307407. [PMID: 37968835 DOI: 10.1002/smll.202307407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Non-noble metal catalysts are known for their efficient catalytic performance for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Metal organic gels (MOGs) can be considered as a promising electrocatalyst owing to the diverse physicochemical properties but usually suffer from its poor electrical conductivity and catalytic stability. Here, a FeCo-MOG is constructed with considerable trifunctional activity. The optimal P-CoFe-H3 prepared by using phytic acid (PA) and 2,4,6-Tris[(p-carboxyphenyl)amino]-1,3,5-triazine benzoic acid (H3 TATAB) as dual ligands), exhibits outstanding ORR, OER, and HER activities as well as stability, exceeding most of state-of-the-art catalysts. As expected, the flexible Zn-air battery applied with P-CoFe-H3 as air cathode displays considerable power density, discharge voltage plateau, and cycling stability. Impressively, it is also capable of driving the overall water-splitting device by applying the P-CoFe-H3 as anode and cathode. Furthermore, theoretical calculations reveal that dual ligands can optimize the coordination environment and charge density of active sites, thereby reducing the absorption energy of intermediate species and boosting the catalytic performance. This work endows the dual-ligands coordination strategy with great potentiality for MOGs-based electrocatalysts in energy conversion devices.
Collapse
Affiliation(s)
- Xinran Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Weiyi Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Shen J, Wu N, Xie W, Li Q, Guo D, Li J, Liu G, Liu X, Mi H. Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering. Molecules 2023; 28:molecules28093757. [PMID: 37175167 PMCID: PMC10180235 DOI: 10.3390/molecules28093757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Fe-based sulfides are a promising type of anode material for sodium-ion batteries (SIBs) due to their high theoretical capacities and affordability. However, these materials often suffer from issues such as capacity deterioration and poor conductivity during practical application. To address these challenges, an N-doped Fe7S8 anode with an N, S co-doped porous carbon framework (PPF-800) was synthesized using a template-assisted method. When serving as an anode for SIBs, it delivers a robust and ultrafast sodium storage performance, with a discharge capacity of 489 mAh g-1 after 500 cycles at 5 A g-1 and 371 mAh g-1 after 1000 cycles at 30 A g-1 in the ether-based electrolyte. This impressive performance is attributed to the combined influence of heteroatomic doping and adjustable interface engineering. The N, S co-doped carbon framework embedded with Fe7S8 nanoparticles effectively addresses the issues of volumetric expansion, reduces the impact of sodium polysulfides, improves intrinsic conductivity, and stimulates the dominant pseudocapacitive contribution (90.3% at 2 mV s-1). Moreover, the formation of a stable solid electrolyte interface (SEI) film by the effect of uniform pore structure in ether-based electrolyte produces a lower transfer resistance during the charge-discharge process, thereby boosting the rate performance of the electrode material. This work expands a facile strategy to optimize the electrochemical performance of other metal sulfides.
Collapse
Affiliation(s)
- Jinke Shen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Naiteng Wu
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Wei Xie
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qing Li
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Donglei Guo
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jin Li
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Guilong Liu
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- Key Laboratory of Green Energy Materials of Luoyang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|