1
|
Xiao D, Dong J, Xie F, Feng X, Wang J, Xu X, Tang B, Sun C, Wang Y, Zhong W, Deng H, Zhou X, Li S. Polyvalent folate receptor-targeting chimeras for degradation of membrane proteins. Nat Chem Biol 2025:10.1038/s41589-025-01924-1. [PMID: 40514550 DOI: 10.1038/s41589-025-01924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/29/2025] [Indexed: 06/16/2025]
Abstract
Lysosome-targeting chimeras (LYTACs) represent a revolutionary targeted protein degradation technology. However, the advancement of LYTACs faces substantial challenges due to the limited diversity of lysosome-trafficking receptors. In this study, we identified folate receptor α (FRα) as a new class of lysosome-trafficking receptors capable of facilitating the degradation of membrane proteins. Leveraging a polyvalent crosslinking strategy, we developed FRα-targeting chimeras (FRTACs), including enhanced green fluorescent protein-targeting FR-Ctx and PD-L1-targeting FR-Atz. The optimized FRTACs demonstrated subnanomolar potency in eliminating cell-surface targets, with efficacy dependent on both FRα expression and lysosomal activity. Specifically, FR-Ctx inhibited cancer cell proliferation, while FR-Atz enhanced T cell-mediated cytotoxicity against tumor cells. FR-Atz exhibited robust PD-L1 degradation efficiency in vivo and elicited tumor-specific immune responses by reprogramming the tumor microenvironment from an immunosuppressive to an immunostimulatory state in both RM-1 and humanized B16F10 mouse models. These findings establish FRTACs as a promising platform for the design of tumor-targeting LYTACs.
Collapse
Affiliation(s)
- Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xun Feng
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jianfeng Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Borui Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuicui Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
2
|
Long Y, Tang B, Xie F, Liu L, Zhou Y, Dong J, Wang J, Sun C, Wang Y, Li R, Zhang N, Li L, Luo L, Xiao J, Zhong W, Xiao D, Deng H, Zhou X. Novel Quaternary Ammonium Salt-Linked STING Agonist Antibody-Drug Conjugate: Synergistic Activation of Tumor Immunity with Mitigated Off-Target Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e02270. [PMID: 40492586 DOI: 10.1002/advs.202502270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/10/2025] [Indexed: 06/12/2025]
Abstract
Immune-stimulating antibody conjugate (ISACs) incorporating STING agonists as payloads leverage both the targeting capability of the Fab region and the Fc region-mediated tumor antigen-dependent immune activation. Herein, a novel class of ISACs is reported, generated by engineering a quaternary ammonium-cleavable linker to conjugate diABZI STING agonist 3 (dSA3) with the HER2-targeting antibody Trastuzumab. The optimized ISAC (TZ-dSA3-12) demonstrated high potency, stability, enhanced solubility, and reduced off-target toxicity. The data showed that TZ-dSA3-12 potently activates the STING pathway in the tumor microenvironment through the synergistic action of the Fab and Fc regions of antibodies (activity switch-on). In contrast, TZ-dSA3-12 exhibited ≈75 fold lower activity than dSA3 in normal immune cells, where activation relies solely on the Fc region without Fab-mediated tumor antigen binding (activity switch-off). Furthermore, systemic administration of TZ-dSA3-12 at a dose (1 mg kg-1) elicited robust and sustained antitumor effect in a manner dependent on the activation of innate immunity and adaptive immunity, including macrophages, dendritic cells (DCs) and CD8+ T cells, while minimizing systemic cytokine release. Notably, TZ-dSA3-12 also induced immunological memory to combat the growth of rechallenged tumors. This innovative quaternary ammonium-linked STING agonist-ISAC represents a promising avenue for the future development of STING-targeted immunotherapy.
Collapse
Affiliation(s)
- Yu Long
- College of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Borui Tang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yangyihua Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianfeng Wang
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Cuicui Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ruoqi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Longlong Luo
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
3
|
Liang S, Ma H, Liu Y, Hai L, Tian Y, Sun Y, Wang Z. Nano-immunomodulator amplifies STING activation in tumor-associated macrophages for cancer immunotherapy. J Control Release 2025; 383:113846. [PMID: 40379214 DOI: 10.1016/j.jconrel.2025.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
The initiation of tumor-specific T cell responses is critically dependent on antigen-presenting cells (APCs). Nevertheless, as the most dominant APCs in tumors, M2-like macrophages largely restrained T cell activation due to inefficient antigen cross-presentation. Herein, we rationally designed a nano-immunomodulator (FANP) to restore the antigen presentation capability of M2-like macrophages by amplifying stimulator of interferon genes (STING) activation. FANPs were fabricated by self-assembly of Fe3+ and Raddeanin A (RA), which rapidly degraded when reaching tumor microenvironment. The released Fe3+ induced the polarization of M2-like macrophages into M1 phenotype, followed by RA stimulation for amplified STING activation, allowing robust antigen cross-presentation and T cell-driven anti-tumor response, leading to effective tumor regression in both immunogenic and poor-immunogenic tumor models. Notably, FANPs exhibited intensive STING activation in human tumor samples, showing potential for clinical impact. Our work offers a simple and robust strategy to re-educate M2-like macrophages by augmenting STING activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haiyan Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Linna Hai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiwei Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yangyang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Liu TT, Zeng KW. Recent advances in target identification technology of natural products. Pharmacol Ther 2025; 269:108833. [PMID: 40015520 DOI: 10.1016/j.pharmthera.2025.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Natural products, characterized by their structural diversity, broad spectrum of biological activities, and safe yet effective therapeutic potential, have become pivotal resources in drug research and development. However, the target proteins of many natural products remain unidentified, a significant challenge that impedes their development into viable drug candidates. Therefore, the target identification is crucial for elucidating the pharmacological mechanisms of natural products and facilitating their therapeutic applications. In this review, we present a comprehensive overview of recent advancements in methodologies for target identification of natural products. Additionally, we predict future developments in new technologies for target discovery. Collectively, this review establishes a methodological framework for uncovering the cellular targets and pharmacological mechanisms of natural products, thereby advancing the development of innovative natural product-based drugs.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Peng D, Cheng L, Tang J, Liu Z, Xue Y, Liu J. Engineered NK Exosomes Captured Antigens In Situ for Enhanced Tumor Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23740-23752. [PMID: 40202388 DOI: 10.1021/acsami.5c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Natural killer (NK) cells are widely involved in the field of tumor immunotherapy due to their unique killing ability. However, the durability and efficacy of NK-cell monotherapy are facing great challenges owing to the limitation of immunosuppressive tumor microenvironment (TME). NK cell-derived exosomes (Neo) not only play an innate immunomodulatory role similar to NK cells but also emerge as promising antitumor nanocarriers. In this study, an engineered Neo (R@Neo-MN) was designed that encapsulates the multifunctional antitumor drug (Raddeanin a, RA) and modified with maleimide (Mal, M) and mannose (Man, N). The obtained R@Neo-MN could not only exert NK cell-like antitumor function but also induce the immunogenic cell death of tumors to release tumor-associated antigens (TAAs). Furthermore, R@Neo-MN activated the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) to release type I interferons (IFN). Then, R@Neo-MN could capture TAAs through Mal and specifically target dendritic cells (DCs) through Man, thereby promoting the maturation of DCs and enhancing tumor-specific cytotoxic T-cell (CTL)-mediated adaptive immunity. The released IFN further promoted the infiltration and activition of NK cells and CTLs at the tumor site. Our study suggested a novel strategy that harnesses both innate and adaptive immunity for enhanced tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Jiang J, Yan Y, Yang C, Cai H. Immunogenic Cell Death and Metabolic Reprogramming in Cancer: Mechanisms, Synergies, and Innovative Therapeutic Strategies. Biomedicines 2025; 13:950. [PMID: 40299564 PMCID: PMC12024911 DOI: 10.3390/biomedicines13040950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Immunogenic cell death (ICD) is a promising cancer therapy where dying tumor cells release damage-associated molecular patterns (DAMPs) to activate immune responses. Recent research highlights the critical role of metabolic reprogramming in tumor cells, including the Warburg effect, oxidative stress, and lipid metabolism, in modulating ICD and shaping the immune microenvironment. These metabolic changes enhance immune activation, making tumors more susceptible to immune surveillance. This review explores the molecular mechanisms linking ICD and metabolism, including mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and ferroptosis. It also discusses innovative therapeutic strategies, such as personalized combination therapies, metabolic inhibitors, and targeted delivery systems, to improve ICD efficacy. The future of cancer immunotherapy lies in integrating metabolic reprogramming and immune activation to overcome tumor immune evasion, with multi-omics approaches and microbiome modulation offering new avenues for enhanced treatment outcomes.
Collapse
Affiliation(s)
| | | | - Chunhui Yang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| | - Hong Cai
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| |
Collapse
|
7
|
Nie AY, Xiao ZH, Deng JL, Li N, Hao LY, Li SH, Hu XY. Bidirectional regulation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:98556. [PMID: 39958554 PMCID: PMC11755995 DOI: 10.4251/wjgo.v17.i2.98556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths in China, and the treatment options are limited. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates the stimulator of interferon gene (STING) signaling pathway as a crucial immune response pathway in the cytoplasm, which detects cytoplasmic DNA to regulate innate and adaptive immune responses. As a potential therapeutic target, cGAS-STING pathway markedly inhibits tumor cell proliferation and metastasis, with its activation being particularly relevant in HCC. However, prolonged pathway activation may lead to an immunosuppressive tumor microenvironment, which fostering the invasion or metastasis of liver tumor cells. AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC. METHODS This review was conducted according to the PRISMA guidelines. The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases. Through rigorous screening and meticulous analysis of the retrieved literature, the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors. RESULTS All authors collaboratively selected studies for inclusion, extracted data, and the initial search of online databases yielded 1445 studies. After removing duplicates, the remaining 964 records were screened. Ultimately, 55 articles met the inclusion criteria and were included in this review. CONCLUSION Acute inflammation can have a few inhibitory effects on cancer, while chronic inflammation generally promotes its progression. Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Ai-Yu Nie
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zhong-Hui Xiao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Jia-Li Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Na Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Li-Yuan Hao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Sheng-Hao Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiao-Yu Hu
- Department of Infection, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
8
|
Pindiprolu SKSS, Singh MT, Magham SV, Kumar CSP, Dasari N, Gummadi R, Krishnamurthy PT. Nanocarrier-mediated modulation of cGAS-STING signaling pathway to disrupt tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03835-3. [PMID: 39907784 DOI: 10.1007/s00210-025-03835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
The cGAS-STING signaling plays an important role in the immune response in a tumor microenvironment (TME) of triple-negative breast cancer (TNBC). The acute and controlled activation of cGAS-STING signaling results in tumor suppression, while chronic activation of cGAS-STING signaling results in immune-suppressive TME that could result in tumor survival. There is a need, therefore, to develop therapeutic strategies for harnessing tumor suppressive effects of cGAS-STING signaling while minimizing the risks associated with chronic activation. Combination therapies and nanocarriers-based delivery of cGAS-STING agonists have emerged as promising strategies in immunotherapy for controlled modulation of cGAS-STING signaling in cancer. These approaches aim to optimize the tumor suppressive effects of the cGAS-STING pathway while minimizing the challenges associated with modulators of cGAS-STING signaling. In the present review, we discuss recent advancements and strategies in combination therapies and nanocarrier-based delivery systems for effectively controlling cGAS-STING signaling in cancer immunotherapy. Further, we emphasized the significance of nanocarrier-based approaches for effective targeting of the cGAS-STING signaling, tackling resistance mechanisms, and overcoming key challenges like immune suppression, tumor heterogeneity, and off-target effects.
Collapse
Affiliation(s)
| | - Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, Vignan Pharmacy College, Vadlamudi, Guntur, India
| | | | - Nagasen Dasari
- School of Pharmacy, Aditya University, Surampalem, Andhra Pradesh, India
| | | | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, 20, Rocklands, Ooty, 643001, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|
9
|
Sun G, He L. A new paradigm for cancer immunotherapy: targeting immunogenic cell death-related noncoding RNA. Front Immunol 2025; 15:1498781. [PMID: 39916954 PMCID: PMC11798941 DOI: 10.3389/fimmu.2024.1498781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Cancer immunotherapy has shown significant potential in treating several malignancies by stimulating the host immune system to recognize and attack cancer cells. Immunogenic cell death (ICD) can amplify the antitumor immune responses and reverse the immunosuppressive tumor microenvironment, thus increasing the sensitivity of cancer immunotherapy. In recent years, noncoding RNAs (ncRNAs) have emerged as key regulatory factors in ICD and oncologic immunity. Accordingly, ICD-related ncRNAs hold promise as novel therapeutic targets for optimizing the efficacy of cancer immunotherapy. However, the immunomodulatory properties of ICD-related ncRNAs have not yet been comprehensively summarized. Hence, we summarize the current knowledge on ncRNAs involved in ICD and their potential roles in cancer immunotherapy in this review. It deepens our understanding of ncRNAs associated with ICD and provides a new strategy to enhance cancer immunotherapy by specifically targeting the ICD-related ncRNAs.
Collapse
Affiliation(s)
| | - Ling He
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zhang CY, Wang YM, Qiu PC, Feng JY, Wang BW, Cao Y, Wei YS, Zhou YT, Tang HF, Lu YY, Zhang Q. Two previously undescribed triterpenoid saponins from the roots and rhizomes of Caulophyllum robustum Maxim. Front Chem 2025; 12:1507891. [PMID: 39850717 PMCID: PMC11754256 DOI: 10.3389/fchem.2024.1507891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C. Spanion B (1-2) and seven known saponins (3-9). The cytotoxicity of these compounds on human cancer cell lines was analyzed using MTT method. Compounds 6 and 9 exhibit cytotoxicity towards these three types of human cancer cells (<10 μM). By utilizing the SEA platform for target prediction, a common tumor related target CD81 was identified. The molecular docking of saponins 1, 2, 6, and 9 with CD81 protein showed strong binding affinities ranging from -4.5 to -7.1 kcal/mol. Research has shown that these compounds can become potential anti-tumor drugs. Further research is still recommended to understand its exact molecular mechanism and toxicological effects.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| | - Yu-Mei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| | - Jia-Yu Feng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bing-Wen Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| | - Yi-Sha Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Tong Zhou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hai-Feng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| | - Qian Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi’an, China
| |
Collapse
|
11
|
Chen J, Zhang Y, Chen X, Luo D, Liu D, Yu Z, Lin Y, He X, Huang J, Lian L. Raddeanin A Inhibits Colorectal Cancer Growth and Ameliorates Oxaliplatin Resistance Through the WNT/β-Catenin Signaling Pathway. Cancer Biother Radiopharm 2025; 40:41-53. [PMID: 39585204 DOI: 10.1089/cbr.2024.0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Background: Chemotherapy based on oxaliplatin (OXA) is the first-line treatment for advanced colorectal cancer (CRC), and acquired resistance to OXA is the main reason for clinical treatment failure in CRC. Methods: To search for compounds that can reverse OXA resistance, we screened a small molecule inhibitor drug library and identified a drug, Raddeanin A (RA), that enhanced the anticancer effect of OXA. Using human CRC cell lines, CRC organoid models, and in vivo subcutaneous tumorigenic studies, we determined that RA inhibits the proliferation of CRC cells by promoting apoptosis and inducing cell cycle arrest. Results: We constructed OXA-resistant CRC cell lines and demonstrated that RA enhances the sensitivity of these cells to OXA. Further experiments showed that the mechanism by which RA enhanced the anticancer effects of OXA in CRC was by inhibiting the activation of the WNT/β-catenin signaling pathway. Conclusions: Because RA has been shown to be biocompatible in animal models, there is a possibility that RA could be developed as a sensitizer for resistant cancer cells or as a novel lead compound to enhance the therapeutic efficacy of OXA in resistant CRCs.
Collapse
Affiliation(s)
- Junguo Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xijie Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandong Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danlin Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoliang Yu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanni Huang
- Department of Geriatrics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Lian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
13
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
14
|
Liu L, Lei H, Hou G, Zhang L, Chen Y, Lu Y, Pei Z, Ge J, Wu J, Zhou J, Cheng L. Gas-Amplified Metalloimmunotherapy with Dual Activation of Pyroptosis and the STING Pathway for Remodeling the Immunosuppressive Cervical Cancer Microenvironment. ACS NANO 2024; 18:12830-12844. [PMID: 38709246 DOI: 10.1021/acsnano.4c00017] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Lin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jun Ge
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Hong W, Zhang Y, Wang S, Li Z, Zheng D, Hsu S, Zhou J, Fan J, Chen Z, Xia X, Zeng Z, Gao Q, Yu M, Du S. RECQL4 Inhibits Radiation-Induced Tumor Immune Awakening via Suppressing the cGAS-STING Pathway in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308009. [PMID: 38381090 DOI: 10.1002/advs.202308009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Institute for Biotechnology, St. John's University, Queens, New York, NY10003, USA
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| |
Collapse
|
16
|
Zhao X, Zheng R, Zhang B, Zhao Y, Xue W, Fang Y, Huang Y, Yin M. Sulfonated Perylene as Three-in-One STING Agonist for Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202318799. [PMID: 38230819 DOI: 10.1002/anie.202318799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
Activation of stimulator of interferon genes (STING) by cyclic dinucleotides (CDNs) has been considered as a powerful immunotherapy strategy. While promising, the clinical translation of CDNs is still overwhelmed by its limited biostability and the resulting systemic immunotoxicity. Being differentiating from current application of exogenous CDNs to address these challenges, we herein developed one perylene STING agonist PDIC-NS, which not only promotes the production of endogenous CDNs but also inhibits its hydrolysis. More significantly, PDIC-NS can well reach lung-selective enrichment, and thus mitigates the systemic immunotoxicity upon intravenous administration. As a result, PDIC-NS had realized remarkable in vivo antitumor activity, and backward verified on STING knock out mice. Overall, this study states that PDIC-NS can function as three-in-one small-molecule STING agonist characterized by promoting the content and biostability of endogenous CDNs as well as possessing good tissue specificity, and hence presents an innovative strategy and platform for tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Xuejie Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Rijie Zheng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Bianbian Zhang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Wanli Xue
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yingfei Fang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Liao Y, Yang H. Metabolic regulation of innate immunity in cancer immunotherapy. Cancer Biol Med 2024; 20:j.issn.2095-3941.2024.0022. [PMID: 38318816 PMCID: PMC10845941 DOI: 10.20892/j.issn.2095-3941.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Yuheng Liao
- Department of Neurosurgery, Huashan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Institute for Translational Brain Research, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Institute for Translational Brain Research, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
19
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
20
|
Lin L, Wu X, Jiang Y, Luo X, Cao X. Raddeanin A Improves the Therapeutic Effect of Osimertinib in NSCLC by Accelerating ROS/NLRP3-mediated Pyroptosis. Curr Pharm Des 2023; 29:2591-2600. [PMID: 37861040 DOI: 10.2174/0113816128263069231010111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Osimertinib (Osm) is the preferred treatment for non-small cell lung cancer (NSCLC) patients with the epidermal growth factor receptor (EGFR) T790M mutation. Nevertheless, the resistance of NSCLC cells to Osm will eventually develop, which remains the biggest obstacle to treating such diseases. Raddeanin A (RA) exhibits a potent anti-tumor effect on various types of cancer cells. In this study, we aimed to investigate whether RA suppresses NSCLC growth and increases the therapeutic effect of Osm. METHODS The effects of RA on inhibiting NSCLC cell viability and proliferation were tested using cell counting kit 8 (CCK-8) and EdU assay. The roles of RA in improving the anti-tumor effect of Osm were tested with CCK-8 and colony formation assays. The roles of RA in regulating reactive oxygen species (ROS)/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-mediated pyroptosis were assessed using quantitative real- time PCR (qRT-PCR) and western blotting analysis. RESULTS RA treatment decreased A549 and H1975 cell viability in a dose- and time-dependent way. RA inhibited NSCLC cell proliferation and tumor growth in vivo. Mechanistically, RA induced ROS overgeneration and resulted in subsequent NLRP3-mediated pyroptosis. In particular, combination treatment with Osm and RA reduced cell viability and clonogenic growth capacity more efficiently than Osm mono treatment in A549 and H1975 cells. Combination treatment also promoted NLRP3-mediated pyroptosis more efficiently than Osm mono treatment. CONCLUSION RA inhibited the NSCLC growth and increased the anti-tumor role of Osm in NSCLC by facilitating ROS/NLRP3-mediated pyroptosis. These results suggested that combination therapy with RA and Osm might be an effective strategy to treat Osm-resistant NSCLC.
Collapse
Affiliation(s)
- Liping Lin
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| | - Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanxue Jiang
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| | - Xi Luo
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| | - Xiaolong Cao
- Department of Oncology, Panyu Central Hospital, Guangzhou, China
- Cancer Institute of Panyu, Guangzhou, China
| |
Collapse
|