1
|
Li J, Li J, Wan L, Li Z. Advances in poly(ethylene oxide)-based solid-state lithium-ion battery research. SOFT MATTER 2025; 21:3410-3424. [PMID: 40207371 DOI: 10.1039/d4sm01297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Solid-state lithium-ion batteries are increasingly recognized as a pivotal advancement for the next generation of energy storage technology, owing to their superior safety, high energy density, and extended cycle life. Among the various solid-state polymer materials for Li-ion batteries, poly(ethylene oxide) (PEO)-based solid-state electrolytes have garnered significant attention owing to their excellent interfacial affinity and high solubility for different lithium salts. However, PEO-based solid electrolytes continue to face obstacles, such as diminished ionic conductivity at ambient temperature, inadequate mechanical characteristics, and severe concentration polarization in practical applications. Researchers have proposed a series of modification strategies to enhance the room temperature ionic conductivity by exploring polymer copolymerization, blending, and hyperbranched methods. To optimize the mechanical properties, studies mainly focus on adding high-strength fillers, introducing cross-linking networks, and developing self-repairing materials. To mitigate the concentration polarization effect, a polyanionic configuration is introduced into the polymer backbone, accompanied by the addition of fillers having anionic receptor groups. In this review, the physicochemical properties and Li+ migration mechanisms of PEO-based solid polymer electrolytes are systematically described, focusing on the aforementioned modification strategies and their research progress. Additionally, it offers insights into future development trends.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Jiapeng Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Lu Wan
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Zhaolei Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| |
Collapse
|
2
|
Li L, Liu Z, Dai G, Xia Y, Xu L, Sun A, Du J. Multiple Regulation of Electrolyte with Trace Amounts of Sodium Dehydroacetate Additives Enables High-Performance Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501731. [PMID: 40135342 DOI: 10.1002/smll.202501731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) draw much attention for low cost and high safety. However, hydrogen evolution reaction (HER) and uneven Zn2+ deposition shorten lifespan, hampering commercial use. In this study, sodium dehydroacetate (SD) containing carbonyl and keto-carbonyl is introduced as multifunctional electrolyte additives, which effectively modifies the solvent shell structure, achieving a Zn2+ transference number of up to 0.72. Acting as a hydrogen bond acceptor, SD disrupts the water network structure, thereby increasing the HER overpotential by 22 mV and the corrosion potential by 9 mV. The polar functional groups in SD can reversibly capture H⁺ ions and dynamically neutralize OH⁻ ions, maintaining interfacial pH balance on the zinc anode and suppressing HER. Notably, SD not only alters the electrolyte's kinetic but also induces uniform Zn2+ deposition along the (002) plane, inhibiting dendrite growth and minimizing side reactions. This phenomenon is demonstrated in both symmetric and full-cell configurations. The Zn//Zn symmetric cell achieves an ultra-long cycling lifespan of 2800 hours at 5 mA cm⁻2, and the Zn//VO2 full battery maintains a capacity retention rate of 73.09% after 2000 cycles with a high average coulombic efficiency of 99.98%, underscoring the effectiveness of this electrolyte additive in enhancing battery performance.
Collapse
Affiliation(s)
- Lubo Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zeqi Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Geliang Dai
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Lijian Xu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Aokui Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jingjing Du
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
3
|
Liang L, Wang Y, Ashraf S, Li P. The enhancement of Li-ion conductivity in 2D metalloid organic frameworks via nodal element substitution. Chem Commun (Camb) 2025; 61:2786-2789. [PMID: 39834208 DOI: 10.1039/d4cc06710j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The development of solid-state electrolytes has become crucial for promoting the safety and performance of lithium-ion batteries. Herein, the substitution of nodal elements from Si to Ge significantly improved the lithium ionic conductivity in 2D metalloid organic frameworks, resulting in an enhancement of approximately one order of magnitude.
Collapse
Affiliation(s)
- Lisha Liang
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China.
| | - Yan Wang
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China.
| | - Shumaila Ashraf
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China.
| | - Pengfei Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Zhuhai, No. 6, Jinfeng Road, Tangjiawan, Zhuhai, 519088, P. R. China
| |
Collapse
|
4
|
Wu X, Sun X, Wang C, Liao H, Lei M, Pan Y, Zhang Y, Gao P. Amorphization engineering of Ni-cysteine coordination composition for urea electro-oxidation at large current density. J Colloid Interface Sci 2025; 679:1141-1149. [PMID: 39423680 DOI: 10.1016/j.jcis.2024.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Unavoidable oxygen evolution reaction (OER) and the relatively high potential to form real active sites of Ni3+ species severely decrease the efficiency of urea-assisted hydrogen generation facility. Herein, amorphization Ni-cysteine coordination (aNi-cys) is constructed as efficient urea electro-oxidation reaction (UOR) catalyst with highly capable of suppressing competitive OER and promoting the Ni2+ to Ni3+ in-situ electrochemical configuration through deliberately regulating the Ni/l-cysteine coordination environment. The abundant ligand atoms (N, S, and O) of l-cysteine considerably tuned the Ni electronic structure to the most suitable state while the amorphization thin lamellas increased the exposed active sites and befitting for the access of electrolyte to electrode surface, resulting improved UOR activity with a large peak current density of 263 mA cm-2, far exceeding crystalline Ni-cysteine coordination (cNi-cys) and long-term stability for 50 h working. Excitingly, only 41 kWh is required to produce 1 kg H2 (50 mA cm-2) from a home-made urea-assisted simulated seawater electrolysis apparatus, about 8 kWh energy saving from that of water splitting. This work gives a clue for preparing advanced electrocatalysts applicable to urea-related energy system with large current density.
Collapse
Affiliation(s)
- Xiulin Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China.
| | - Chaoqi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Hailong Liao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Mingjie Lei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Yuan Pan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Yuwei Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| |
Collapse
|
5
|
Zhang S, Zhang R, Li M, Wang H, Wang Z. Encapsulation of biomimetic nanozymes in MOF matrices as peroxidase mimetics for sensitive detection of L-cysteine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:955-963. [PMID: 39758013 DOI: 10.1039/d4ay01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A metal-organic framework (MOF)-encapsulated nanozyme has been developed to detect L-cysteine (L-Cys) through a facile colorimetric sensing method in this study. This nanozyme was prepared by encapsulating Fmoc-histidine (FH) and hemin within ZIF-8 (FH/hemin@ZIF-8) and exhibited significantly enhanced catalytic activity and great stability because of its unique structure. FH/hemin@ZIF-8 oxidized colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a distinct blue color with the assistance of H2O2. However, after the addition of L-Cys, this oxidation process was inhibited, resulting in the solution fading from blue to colorless. This change can be observed by the naked eyes and quantitatively analyzed using a UV-vis spectrophotometer. Additionally, this system demonstrated excellent resistance to interference and exceptional selectivity. In addition, this system showed a low detection limit of 23.1 nm (S/N = 3). Consequently, it is believed that the strategy of encapsulating biomimetic nanozymes within MOFs holds significant potential for applications in bioanalysis and the early diagnosis of L-Cys.
Collapse
Affiliation(s)
- Shaohong Zhang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Ran Zhang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Minzi Li
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Hongying Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Zhijuan Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| |
Collapse
|
6
|
Song Y, Su M, Xiang H, Kang J, Yu W, Peng Z, Wang H, Cheng B, Deng N, Kang W. PEO-Based Solid-State Polymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408045. [PMID: 39593246 DOI: 10.1002/smll.202408045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Developing solid-state lithium metal batteries with wide operating temperature range is important in future. Polyethylene oxide (PEO)-based solid-state electrolytes are extensively studied for merits including superior flexibility and low glass transition temperature. However, ideal usage temperatures for conventional PEO-based solid-state electrolytes are between 60 and 65 °C, and unequable temperature degrades their electrochemical performances at low and high temperatures (≤25 °C and ≥80 °C). Herein, modification methods of PEO electrolytes for low, high especially wide-temperature applications are reviewed based on detailed analyses of mechanisms involved in its modification at different temperatures. First, shortcomings of PEO solid electrolytes due to influence of temperature are pointed out. Second, existing modification strategies are summarized in detail from three aspects of high, low especially wide temperatures, including application of PEO derivatives or chain segment modification treatment of PEO, addition of fillers, and other modification methods such as reasonable regulation of lithium salts, introduction of functional layers and addition of metal-organic frameworks (MOFs) or covalent organic frameworks (COFs). Finally, a summary and description of PEO-based solid electrolyte research and development trends for wide-temperature applications are provided. The review aims to offer some guidance for the creation of PEO solid batteries with wider working temperature ranges.
Collapse
Affiliation(s)
- Yunxuan Song
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Meng Su
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hengying Xiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Junbao Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wen Yu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaozhao Peng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hang Wang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tiangong University, Tianin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tiangong University, Tianin, 300387, P. R. China
| |
Collapse
|
7
|
Wang L, Dong L, Xie L, Wang Z, Li L, Shangguan E, Li J. Tailoring Ce-Centered Metal-Organic Frameworks for Fast Li + Transport in Composite Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62052-62063. [PMID: 39482830 DOI: 10.1021/acsami.4c13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulating metal nodes to innovate the metal-organic framework (MOF) structure is of great interest to boost the performance of MOFs-incorporated composite solid electrolytes. Herein, Ce4+ with a low-lying 4f orbital is selected as metal center to coordinate with organic ligand to prepare MOF of Ce-UiO-66. The unsaturated open metal sites and defected oxygen vacancies furnish Ce-UiO-66 with strengthened Lewis acidity, which promotes Ce-UiO-66 interacting effectively with both poly(ethylene oxide) (PEO) and Li salt anions. Accordingly, Ce-UiO-66 as additive fillers can be uniformly dispersed in PEO matrix to form an advanced composite solid-state electrolyte (Ce-UiO@PEO) with accelerated Li+ transport. The optimized Ce-UiO@PEO displays a boosted ionic conductivity of 4.20 × 10-4 S cm-1 and an improved Li+ transference number of 0.39 at 60 °C, which are highly comparable to those of other MOFs@PEO electrolytes. Combined with the mechanical and thermal stabilities, such a Ce-UiO@PEO electrolyte enables Li/Li symmetric and Li/LiFePO4 full cells with superior cycling stability and rate performance. The Ce-UiO@PEO electrolytes are of great potential to be applied in high-performance lithium metal batteries.
Collapse
Affiliation(s)
- Liyuan Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lingli Dong
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Liyuan Xie
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
8
|
Shi L, Wang X, Liu Z. Enhancing the performance of ionic conductivity for solid-state electrolytes: an effective strategy of injecting lithium ions within anionic metal-organic frameworks. Chem Commun (Camb) 2024; 60:13416-13419. [PMID: 39469757 DOI: 10.1039/d4cc04515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) are considered as potential solid-state electrolyte (SSE) materials due to their structural diversity and porosity. Adding lithium ions into the anionic frameworks of MOFs and then realizing single-ion transport is an efficient way to enhance the performance of ionic conductivity of SSE materials. Herein, an ionotropic MOF (Li+[Cu-BTC]-) with lithium ions in the pores of the lattice was synthesized through an ion exchange strategy, which exhibits outstanding lithium ionic conducting properties over a wide temperature range (ionic conductivity: 0.11-2.96 × 10-3 S cm-1 in the temperature range of -40 to 100 °C). The strategy of injecting Li+ within anionic metal-organic frameworks provides a new opportunity for exploring advanced SSEs.
Collapse
Affiliation(s)
- Lu Shi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
9
|
Li Y, Yuan W, Lu F, Shen Y, Li D, Cong F, Zhu P, Li Y, Liu P, Huang Y, Li J, Hu Z. Conducting Composite Polymer-Based Solid-State Electrolyte with High Ion Conductivity via Amorphous Condensed Structure and Multiple Li + Transport Channels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405187. [PMID: 39206605 DOI: 10.1002/smll.202405187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Traditional PEO electrolyte has high crystallinity which hinders the transmission of Li+, resulting in poor ion conductivity and complicated processing technology. Herein, a polymer electrolyte (p-electrolyte) with a wide electrochemical window and high ionic conductivity is designed, which possesses an amorphous condensed structure. The amorphous structure provides fast transport channels for Li+, so the p-electrolyte possesses an electrochemical window of 4.2 V, and high ionic conductivity of 1.58 × 10-5 S cm-1 at room temperature, which is 1-2 orders of magnitude higher than that of traditional PEO electrolyte. By using the designed polymer electrolyte as the foundation, an in situ curable composite polymer electrolyte (CPE-L) with multiple Li+ transport channels is elaborately constructed. The Cu-BTC MOF stores abundant Li+, which is introduced into the p-electrolyte. The rich unsaturated Cu2+ coordination sites of Cu-BTC can anchor TFSI- to release Li+, and the pore structure of Cu-BTC MOF cooperates with LLZTO nanoparticles to provide multiple fast transport channel for Li+, resulting in remarkable ionic conductivity (1.02 × 10-3 S cm-1) and Li+ transference number (0.58). The Li||CPE-L||Li symmetric battery cycles stably for more than 700 h at 0.1 mA cm-2, while the specific capacity of full battery is ≈153 mAh g-1 (RT, 0.2 C).
Collapse
Affiliation(s)
- Yueshan Li
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Weihao Yuan
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Fei Lu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Yibo Shen
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Da Li
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Fei Cong
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Pingwei Zhu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Yunling Li
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Pengxiang Liu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| | - Zhen Hu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150006, China
| |
Collapse
|
10
|
Zhou M, Cui K, Wang TS, Luo Z, Chen L, Zheng Y, Li B, Shi B, Liu J, Shao JJ, Zhou G, Yang S, He YB. Bimetal Fluorides with Adjustable Vacancy Concentration Reinforcing Ion Transport in Poly(ethylene oxide) Electrolyte. ACS NANO 2024; 18:26986-26996. [PMID: 39299912 DOI: 10.1021/acsnano.4c09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The poor ambient ionic transport properties of poly(ethylene oxide) (PEO)-based SPEs can be greatly improved through filler introduction. Metal fluorides are effective in promoting the dissociation of lithium salts via the establishment of the Li-F bond. However, too strong Li-F interaction would impair the fast migration of lithium ions. Herein, magnesium aluminum fluoride (MAF) fillers are developed. Experimental and simulation results reveal that the Li-F bond strength could be readily altered by changing fluorine vacancy (VF) concentration in the MAF, and lithium salt anions can also be well immobilized, which realizes a balance between the dissociation degree of lithium salts and fast transport of lithium ions. Consequently, the Li symmetric cells cycle stably for more than 1400 h at 0.1 mA cm-2 with a LiF/Li3N-rich solid electrolyte interphase (SEI). The SPE exhibits a high ionic conductivity (0.5 mS cm-1) and large lithium-ion transference number (0.4), as well as high mechanical strength owing to the hydrogen bonding between MAF and PEO. The corresponding Li//LiFePO4 cells deliver a high discharge capacity of 160.1 mAh g-1 at 1 C and excellent cycling stability with 100.2 mAh g-1 retaining after 1000 cycles. The as-assembled pouch cells show excellent electrochemical stability even at rigorous conditions, demonstrating high safety and practicability.
Collapse
Affiliation(s)
- Mingxia Zhou
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Kai Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Tian-Shuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Zhihong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Li Chen
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Yun Zheng
- Institute of New Energy Materials and Engineering, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P.R. China
| | - Bin Li
- School of Materials Science & Engineering, Beihang University, Beijing 100191, P.R. China
| | - Bin Shi
- State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi 563003, P. R. China
| | - Jiangtao Liu
- State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi 563003, P. R. China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Shubin Yang
- School of Materials Science & Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yan-Bing He
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
11
|
Sheng L, He X, Xu H. Advances in nanoporous materials for next-generation battery applications. NANOSCALE 2024; 16:13373-13385. [PMID: 38958068 DOI: 10.1039/d4nr02050b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, nanoporous materials, mainly represented by metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have shown unparalleled potential in critical applications such as energy storage, gas separation and catalysis. The integration of MOFs/COFs into battery technology has garnered substantial research attention since it was found that such materials also play important roles in batteries. The highly controllable nanoporous features of MOFs/COFs enable the regulation of the solvation environment of lithium ions, thereby significantly improving the performance of lithium metal batteries. Moreover, the selective adsorption features of MOFs/COFs make them particularly useful for stabilising high nickel cathodes and sulfur cathodes. This review provides an overview of the application of MOFs/COFs in batteries, and explores potential future directions and challenges in this rapidly evolving interdisciplinary field.
Collapse
Affiliation(s)
- Li Sheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Wang X, Jin S, Shi L, Zhang N, Guo J, Zhang D, Liu Z. Toward Enhancing Low Temperature Performances of Lithium-Ion Transport for Metal-Organic Framework-Based Solid-State Electrolyte: Nanostructure Engineering or Crystal Morphology Controlling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33954-33962. [PMID: 38904988 DOI: 10.1021/acsami.4c04839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as attractive candidates for Li+ conducting electrolytes due to their regular channels and controllable morphology, making their presence prominent in the field of solid-state lithium batteries. However, most MOF-based electrolytes are researched at or near room temperature, which poses a challenge to their practical applications at low temperatures. Herein, a thin layer flower-shaped 2D Cu-MOF (CuBDC-10)-based solid-state electrolytes (SSEs) for lithium-ion batteries (LIBs) are developed for facilitating Li+ transport at lower temperatures, which achieve an ion conductivity of 10-4 S cm-1 at -30 °C. The CuBDC-10-based SSE exhibits outstanding ionic conductivity over a wide temperature range of -40 to 100 °C (0.073-3.68 × 10-3 S cm-1). This work provides strategies for exploring MOF-based SSEs with high ionic transport performances at low temperatures.
Collapse
Affiliation(s)
- Xin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Sheng Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Lu Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Nan Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jia Guo
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Dianqu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
13
|
Liu S, Jiang G, Wang Y, Liu C, Zhang T, Wei Y, An B. Vitrified Metal-Organic Framework Composite Electrolyte Enabling Dendrite-Free and Long-Lifespan Solid-State Lithium Metal Batteries. ACS NANO 2024; 18:14907-14916. [PMID: 38807284 DOI: 10.1021/acsnano.3c11725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Solid-state lithium metal batteries (LMBs) are still plagued with low ionic conductivity and inferior interfacial contact, which hinder their practical implementation. Herein, a quasi-solid-state composite electrolyte, poly(1,3-dioxolane) (PDOL)/glassy ZIF-62 (PGZ) with fast ion transport and intimate interface contact, is fabricated via in situ polymerization. The in situ polymerization of DOL in an electrolyte matrix not only improves the exterior interface between electrolyte/electrode but also optimizes the inner interfaces among glassy particles, rendering PGZ as an uninterrupted ionic conductor. Moreover, PGZ inherits the superior ionic conductivity and the robust dendrite prohibition of glassy MOFs originating from their grain-boundary-free nature, isotropy, and abundant groups containing N species. As expected, our proposed PGZ exhibits a prominent ionic conductivity of 6.3 × 10-4 S cm-1 at 20 °C. Li|PGZ|LiFePO4 delivers an outstanding rate performance (103 mAh g-1 at 4C) and a stable cycling capacity (118 mAh g-1 at 1C over 1000 cycles). PGZ also presents excellent low-temperature cycling performance with 75 mAh g-1 for 480 cycles at -20 °C and excellent flame retardance. Even at a high loading of 12.1 mg cm-2, it can still discharge at 140 mAh g-1 for 100 cycles. Hence, PGZ prepared via in situ polymerization holds enormous prospects as a solid-state electrolyte for high-performance and safe LMBs.
Collapse
Affiliation(s)
- Shouxiang Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Guangshen Jiang
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, China
| | - Yimao Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Chengyang Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Tongyang Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Yanyan Wei
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Baigang An
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, China
| |
Collapse
|
14
|
Wang C, Shen Y, Wang X, Zhang Y, Wang C, Wang Q, Li H, Wang S, Gui D. Imparting Stable and Ultrahigh Proton Conductivity to a Layered Rare Earth Hydroxide via Ion Exchange. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22648-22656. [PMID: 38634669 DOI: 10.1021/acsami.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Proton conductors are essential functional materials with a wide variety of potential applications in energy storage and conversion. In order to address the issues of low proton conductivity and poor stability in conventional proton conductors, a simple and valid ion-exchange method was proposed in this study for the introduction of stable and ultrahigh proton conductivity in layered rare earth hydroxides (LRHs). Test analyses by solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and powder X-ray diffraction revealed that the exchange of H2PO4- not only does not disrupt the layered structure of LRHs, but also creates more active proton sites and channels necessary for proton transport, thereby creating a high-performance proton conductor (LRH-H2PO4-). By utilizing this ion-exchange method, the proton conductivity of LRHs can be significantly enhanced from a low level to an ultrahigh level (>10-2 S·cm-1), while maintaining excellent long-term stability. Moreover, through methodically manipulating the guest ions and molecules housed within the interlayers of LRHs, a comprehensive explanation has been presented regarding the proficient mechanism of proton conduction in LRH-H2PO4-. As a result, this investigation presents a feasible and available approach for advancing proton conductor.
Collapse
Affiliation(s)
- Cong Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Yexin Shen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xiuyuan Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Chengzhen Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Qin Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hui Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Daxiang Gui
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| |
Collapse
|
15
|
Chen Z, Wang Q, Bai S, Wang X, Lin W, Zhang Y. Processing mechanism synergizing surface and intercalation pseudocapacitance engineering fast-charging Li-based anode materials. J Colloid Interface Sci 2024; 659:463-473. [PMID: 38183812 DOI: 10.1016/j.jcis.2023.12.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Pseudocapacitive material can achieve rapid charge and discharge response. In this study, a vanadium-based conductive network hydrate (Na0.13Mg0.02)V2O5·0.98H2O (NMVO) was designed. The Na+ and Mg2+ in NMVO are sandwiched between two layers of vacancy-ordered prisms and monoclinic nanonetwork V3O7 (VO2:V2O5 = 1:1) to form a conductive network with a layer spacing of up to 11.67 Å, this structure facilitates rapid interlayer diffusion of cations and enhanced conductivity. Reduction-NMVO (r-NMVO) with hierarchical heterostructures was prepared via an in-situ electrochemical process to generate interlayer vanadium-based active sites (LiV3O8, LiV2O5, Na3V3O8, MgVO3) with multi-electron reaction, which enhanced the generation of surface redox pseudocapacitance. The interlayer heterostructure is integrated with the core of the precursor V3O7 to form an active site-rich conductive network with strong pulse impact resistance, which promotes the generation of intercalated pseudocapacitance and increases the cycle stability of the electrode. This intercalation-surface redox pseudocapacitive mechanism was confirmed by first-principles, in-situ, and ex-situ characterization analysis. The r-NMVO|Li battery still maintains a capacity of 95.5 % after 65,500 cycles at a current density of 50 A g-1. These results contribute directly to the realization of stable, fast charge and discharge material design.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiming Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China; Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Shuai Bai
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China; Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Wenlie Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yining Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, P. R. China.
| |
Collapse
|
16
|
Lu C, Chen X. Ultrafast Ion Transfer of Metal-Organic Framework Interface for Highly Efficient Energy Storage. NANO LETTERS 2024; 24:3267-3272. [PMID: 38416580 DOI: 10.1021/acs.nanolett.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Flexible supercapacitors are favorable for wearable electronics. However, their high-rate capability and mechanical properties are limited because of unsatisfactory ion transfer kinetics and interfacial modulus mismatch inside devices. Here, we develop a metal-organic framework interface with superior electrical and mechanical properties for supercapacitors. The interfacial mechanism facilitates ultrafast ion transfer with an energy barrier reduction of 43% compared with that of conventional transmembrane transport. It delivers high specific capacity at a wide rate range and exhibits ultrastability beyond 30000 charge-discharge cycles. Furthermore, meliorative modulus mismatch benefited from ultrathin interface design that improves mechanical properties of flexible supercapacitors. It delivers a stable energy supply under various mechanical conditions like bending and twisting status and displays ultrastable mechanical properties with performance retention of 95.5% after 10 000 bending cycles. The research paves the way for interfacial engineering for ultrastable electrochemical devices.
Collapse
Affiliation(s)
- Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
17
|
Wang L, Xie L, Dong L, Wang Z, Li L, Shangguan E, Li J, Gao S. Composite poly(ethylene oxide)-based solid electrolyte with consecutive and fast ion transport channels constructed by upper-dimensional MIL-53(Al) nanofibers. J Colloid Interface Sci 2024; 657:632-643. [PMID: 38071812 DOI: 10.1016/j.jcis.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Novel structural designs for metal organic frameworks (MOFs) are expected to improve ion-transport behavior in composite solid electrolytes. Herein, upper-dimensional MIL-53(Al) nanofibers (MNFs, MIL-53 belongs to the MIL (Material Institute Lavoisier) group) with flower-like nanoflake structures have been designed and constructed via modified hydrothermal coordination. The optimized MNFs with high surface area and porosity can form abundant interfaces with poly(ethylene oxide) (PEO) matrix. The plasticization of MNFs to the PEO matrix will facilitate segmental movement of PEO chains to facilitate Li+ conduction. The unsaturated open metal centers of MNFs can effectively capture bis(trifluoromethanesulfonyl)imide anions (TFSI-) to deliver more free lithium ions for transfer. Moreover, the upper-dimensional nanofiber structure endows lithium ions with a long-range and consecutive transport pathway. The obtained composite solid electrolyte (MNFs@PEO) presents a high ionic conductivity of 4.1 × 10-4 S cm-1 and a great Li+ transference number of 0.4 at 60 °C. The electrolyte also exhibits a stable Li plating/stripping behavior over 1000 h at 0.1 mA cm-1 with inhibited Li dendrite growth. Furthermore, the Li/LiFePO4 and Li/LiNi0.8Mn0.1Co0.1O2 batteries with MNFs@PEO as electrolytes both display great cycling stabilities with high-capacity retention, indicating their potential applications in lithium metal batteries. The study will put forward new inspirations for designing advanced MOF-based composite solid electrolytes.
Collapse
Affiliation(s)
- Liyuan Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Liyuan Xie
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lingli Dong
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shengbo Gao
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
18
|
Hu H, Li W, Liu H, Kang G, Chang H, Cui S, Su G, Liu W, Jin Y. Studies on Composite Solid Electrolytes with a Dual Selective Confinement Interface Structure of Anions for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3552-3563. [PMID: 38197727 DOI: 10.1021/acsami.3c17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Solid-state lithium batteries (SSLBs) have attracted much attention due to their good thermal stability and high energy density. However, solid-state electrolytes with low conductivity and prominent interfacial issues have hindered the further development of SSLBs. In this research, inspired from a selective confinement structure of anions, a novel HMOF-DNSE composite solid electrolyte with a dual selective confinement interface structure is proposed based on the semi-interpenetrating structure generated by poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP), poly(di-n-butylmethylammonium) bis(trifluoromethanesulfonyl)imide (PDADMATFSI), and a metal-organic frameworks MOF derivative (HMOF) as a filler. The dual-network structure of PVDF-HFP/PDADMATFSI combined with HMOF formed a dual selective confinement interface structure to confine out the movement of large anions TFSI-, thereby enhancing the transfer ability of Li+. Subsequently, the addition of HMOF further improves the transfer of Li+ by binding up TFSI- through its crystal structure. The results show that HMOF-DNSE possesses a high room-temperature ionic conductivity (0.7 mS cm-1), a wide electrochemical window (up to 4.5 V), and a high Li+ transfer number (tLi+) (0.56). LiFePO4/HMOF-DNSE/Li cell shows an excellent capacity of 141.5 mAh g-1 at 1C rate under room temperature, with a high retention of 80.1% after 500 cycles. The material design strategy, which is based on selective confinement interface structures of anions, offers valuable insights into enhancing the electrochemical performance of solid-state lithium batteries.
Collapse
Affiliation(s)
- Hongkai Hu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Weiya Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Haojing Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Guohong Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Hui Chang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Shengrui Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Ge Su
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| |
Collapse
|
19
|
Mu AU, Cai G, Chen Z. Metal-Organic Frameworks for the Enhancement of Lithium-Based Batteries: A Mini Review on Emerging Functional Designs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305280. [PMID: 37946699 PMCID: PMC10787081 DOI: 10.1002/advs.202305280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Indexed: 11/12/2023]
Abstract
Metal-organic frameworks (MOFs) have played a crucial role in recent advancements in developing lithium-based battery electrolytes, electrodes, and separators. Although many MOF-based battery components rely on their well-defined porosity and controllable functionality, they also boast a myriad of other significant properties relevant to battery applications. In this mini-review, the distinct advantages of MOFs in battery applications are discussed, including using MOFs to 1) scavenge impurities to increase cycling stability, 2) widen the operation temperature range of conventional electrolytes, 3) widen the operation voltage range of common electrolytes, and 4) employ as artificial solid-electrolyte interphases to prevent lithium dendrite growth. Furthermore, subsisting challenges of developing these emerging MOF-based battery technologies are discussed and guidance for shaping the future of this field is given.
Collapse
Affiliation(s)
- Anthony U Mu
- Department of Nano and Chemical Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Guorui Cai
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr, College Park, MD, 20742, USA
| | - Zheng Chen
- Department of Nano and Chemical Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Sustainable Power and Energy Center, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Ma Q, Qiang R, Shao Y, Yang X, Xue R, Chen B, Chen Y, Feng S. MOF-derived Co-C composites with 3D star structure for enhanced microwave absorption. J Colloid Interface Sci 2023; 651:106-116. [PMID: 37542886 DOI: 10.1016/j.jcis.2023.07.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
The demand of microwave absorption materials (MAMs) with unique morphologies and electromagnetic (EM) balance has become necessary in recent years. Due to the ease of synthesis and tunable structure, metal-organic frameworks (MOFs) are widely used for this special MAMs. In this study, a new three-dimensional hybrid MOF is proposed that is co-doped with six equally branched star morphologies. The Co-C composite has the same six-branched morphology as that of the precursor. When the EM wave is incident, this special structure makes it easier for the EM wave to enter the material vertically due to the expansion of the incident surface, which is effective in adjusting the transmission path of the electron and the reflection and distribution of the EM wave. Because of the special morphology and magneto-dielectric synergy, the Co-C composite shows a minimum reflection loss (RLmin) of -48.5 dB at 11.0 GHz at an absorption thickness of 3.0 mm, with a microwave absorption bandwidth (EAB) of 6.1 GHz. This research provides a practical guidance for preparing the MAMs of special star structure.
Collapse
Affiliation(s)
- Qian Ma
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Rong Qiang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China; Advanced Textile Equipment Technology Provincial and Ministerial Collaborative Innovation Center, Zhengzhou, Henan 450007, China.
| | - Yulong Shao
- Faculty of Engineering, HUANGHE S&T University, Zhengzhou, Henan 450061, China.
| | - Xiao Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Rui Xue
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Bowen Chen
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Yi Chen
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Shijiang Feng
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| |
Collapse
|