1
|
Lu Y, Wang J, Bi X, Qian H, Pan J, Ye J. Non-invasive and rapid diagnosis of low-grade bladder cancer via SERSomes of urine. NANOSCALE 2025; 17:7303-7312. [PMID: 39988954 DOI: 10.1039/d4nr05306k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Early screening and diagnosis of low-grade bladder cancer (LGBC) can help to guide timely clinical treatments before deterioration, reducing relapse rates and improving patient survival and quality of life. However, current clinical technologies are mainly invasive, painful, and lack sensitivity and time efficacy, which cannot always meet clinical needs. Surface-enhanced Raman scattering (SERS) is a label-free detection technique with high sensitivity and can provide molecular-specific information. In this work, we adopt SERSomes, an advanced SERS characterization approach using a SERS spectral set, to comprehensively and accurately profile urine metabolites of LGBC patients and healthy controls. With the help of machine learning, we achieved high accuracy of LGBC diagnosis (89.47%) and LGBC stratification (90%). The entire diagnostic process is very rapid, convenient, non-invasive, and low-cost, holding potential for future use in mass population health screenings. Moreover, we explore the metabolite contribution based on the varying SERSome patterns in LGBC patients, aiming at indicating potential urine biomarkers of LGBC.
Collapse
Affiliation(s)
- Yao Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Xinyuan Bi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Hongyang Qian
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
2
|
Aires I, Parada B, Ferreira R, Oliveira PA. Recent animal models of bladder cancer and their application in drug discovery: an update of the literature. Expert Opin Drug Discov 2025:1-21. [PMID: 39954010 DOI: 10.1080/17460441.2025.2465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/29/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Bladder cancer presents a significant health problem worldwide, with environmental and genetic factors contributing to its incidence. Histologically, it can be classified as carcinoma in situ, non-muscle invasive and muscle-invasive carcinoma, each one with distinct genetic alterations impacting prognosis and response to therapy. While traditional transurethral resection is commonly performed in carcinoma in situ and non-muscle invasive carcinoma, it often fails to prevent recurrence or progression to more aggressive phenotypes, leading to the frequent need for additional treatment such as intravesical chemotherapy or immunotherapy. Despite the advances made in recent years, treatment options for bladder cancer are still lacking due to the complex nature of this disease. So, animal models may hold potential for addressing these limitations, because they not only allow the study of disease progression but also the evaluation of therapies and the investigation of drug repositioning. AREAS COVERED This review discusses the use of animal models over the past decade, highlighting key discoveries and discussing advantages and disadvantages for new drug discovery. EXPERT OPINION Over the past decade animal models have been employed to evaluate new mechanisms underlying the responses to standard therapies, aiming to optimize bladder cancer treatment. The authors propose that molecular engineering techniques and AI may hold promise for the future development of more precise and effective targeted therapies in bladder cancer.
Collapse
Affiliation(s)
- Inês Aires
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Belmiro Parada
- Coimbra Institute for Clinical and Biomedical, University of Coimbra, Coimbra, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
3
|
Ma Y, Tu Y, Chen Y, Chen X, Pan X, Sun M, Fu X, Zou J, Gao F. An Oral H 2S Responsive Cu 5.4O Nanozyme Platform with Strong ROS/H 2S Scavenging Capacity for the Treatment of Colitis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:617-631. [PMID: 39722133 DOI: 10.1021/acsami.4c17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (H2S) at inflammatory sites. Nanozyme-mediated ROS and H2S scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging Cu5.4O nanoparticle and first explored its H2S scavenging capacity. Chitosan oligosaccharide modified with alpha-lipoic acid was coated on the nanoparticles to further enhance the H2S scavenging capacity. Furthermore, calcium alginate was coated on the surface to develop an oral nanoplatform (Cu5.4O@SAG) possessing dual-pH/H2S-responsive release characteristics. Importantly, Cu5.4O@SAG exhibited enrichment at the colonic inflammation site and relieved the inflammatory index, containing the recovery of colon length, spleen index, liver index, and body weight, as well as inflammatory cell infiltration. In vivo and in vitro experiments revealed the dual ROS and H2S scavenging capacities of the nanoplatform. Additionally, Cu5.4O@SAG regulated tight junctions, mucus layers, and gut microbiota, which was accompanied by the downregulation of inflammatory cytokines. Notably, Cu5.4O@SAG also had excellent biocompatibility. In conclusion, this oral multiple-scavenging nanozyme platform provides a new and safe paradigm for the development of nanozymes for colitis treatment.
Collapse
Affiliation(s)
- Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixing Tu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xier Pan
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyue Sun
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Chang M, Chi C, Zheng Z, Zhang M, Lv J, Wang X. Hydrogel-based formulations for urothelial cancer therapy. Front Pharmacol 2024; 15:1478394. [PMID: 39386025 PMCID: PMC11461203 DOI: 10.3389/fphar.2024.1478394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Drug infusion therapy after surgery for urothelial carcinoma is an effective measure to reduce cancer recurrence rate. Hydrogels are drug carriers with good biocompatibility and high drug loading capacity, which can optimize the pharmacokinetics of drugs in the urinary system to improve the therapeutic effect. Compared with the traditional free drug in situ perfusion, the hydrogel drug loading system can still maintain effective drug concentration in the face of continuous urinary flushing due to its good mucosal adhesion effect. The significantly prolonged drug retention time can not only improve the therapeutic effect of drugs, but also reduce the discomfort and risk of urinary tract infections caused by frequent drug infusion, and improve patient compliance. In addition, the combination of hydrogel with nanoparticles and magnetic materials can also improve the mucosal permeability and targeting effect of the hydrogel drug loading system, so as to overcome the mucus layer of urinary epithelium and the physiological barrier of tumor and minimize the impact on normal tissue and cell functions. At present, the research of hydrogels for urothelial cancer treatment involves chemotherapy, immunotherapy, gene therapy, inhibition of metabolism and multi strategy synergistic therapy. This review summarizes the research progress of hydrogels for the treatment of urothelial carcinoma, hoping to provide a reference for the future research of safe, reliable, effective, and advanced hydrogels with little side effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqing Wang
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Obireddy SR, Lai WF. Advances in preclinical approaches for intravesical therapy of bladder cancer. Curr Opin Urol 2024; 34:227-235. [PMID: 38757170 DOI: 10.1097/mou.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to explore new strategies to treat bladder cancer. This article addresses challenges and opportunities in intravesical therapy of bladder cancer. RECENT FINDINGS The review examines the latest advances in the development of preclinical approaches for intravesical therapy of bladder cancer. It discusses strategies to improve drug delivery efficiency by using synthesized diverse carriers. Immunotherapy with protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride has been shown to be more effective than intravesical Bacillus Calmette-Guerin. Novel drug delivery systems such the urinary drug-disposing strategy and intravesical nanoparticle formulations improve the drug delivery efficiency while minimizing adverse reactions. Innovative imaging techniques using near-infrared fluorescence probes and multifunctional nano-transformers enable real-time detection and targeted therapy in bladder cancer treatment. SUMMARY Treatment of bladder cancer is clinically challenging. However, recent progress in drug delivery technologies shows promise. Optimizing these technologies helps improve patient outcomes, and facilitates clinical translation of different treatment modalities.
Collapse
Affiliation(s)
- Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadevaraya University, Ananthapur, India
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Zhang L, Cheng L. Advances in Optical Probes for the Detection of Hydrazine in Environmental and Biological Systems. Crit Rev Anal Chem 2023; 55:53-82. [PMID: 37815930 DOI: 10.1080/10408347.2023.2261546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Hydrazine, as a crucial raw material in the fine chemical industry, plays an indispensable role in fuel, catalyst, pesticide and drug synthesis. Due to its good water solubility and high toxicity, hydrazine can cause irreparable damage to water and soil in the environment, and it can also be released by taking certain drugs, which brings potential risks to human health. Therefore, it is vital to develop a method that can specifically detect hydrazine in the environment and in vivo. As an effective analysis and detection tool, fluorescence probe has attracted extensive attention in recent years. In this review, we summarized and classified hydrazine fluorescence probes based on various reaction mechanisms, and discussed their structures and applications in the past ten years. At least, we briefly outline the challenges and prospects in this field.
Collapse
Affiliation(s)
- Lun Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Lijuan Cheng
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, China
| |
Collapse
|