1
|
Zhang D, Zhang C, Xu H, Huo Z, Shi X, Liu X, Liu G, Yu C. Facilely Fabricating F-Doped Fe 3N Nanoellipsoids Grown on 3D N-Doped Porous Carbon Framework as a Preeminent Negative Material. Molecules 2024; 29:959. [PMID: 38474473 DOI: 10.3390/molecules29050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Transition metal nitride negative electrode materials with a high capacity and electronic conduction are still troubled by the large volume change in the discharging procedure and the low lithium ion diffusion rate. Synthesizing the composite material of F-doped Fe3N and an N-doped porous carbon framework will overcome the foregoing troubles and effectuate a preeminent electrochemical performance. In this study, we created a simple route to obtain the composite of F-doped Fe3N nanoellipsoids and a 3D N-doped porous carbon framework under non-ammonia atmosphere conditions. Integrating the F-doped Fe3N nanoellipsoids with an N-doped porous carbon framework can immensely repress the problem of volume expansion but also substantially elevate the lithium ion diffusion rate. When utilized as a negative electrode for lithium-ion batteries, this composite bespeaks a stellar operational life and rate capability, releasing a tempting capacity of 574 mAh g-1 after 550 cycles at 1.0 A g-1. The results of this study will profoundly promote the evolution and application of transition metal nitrides in batteries.
Collapse
Affiliation(s)
- Dan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chunyan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Huishi Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhe Huo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinyu Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaodi Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Guangyin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chuang Yu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Fu Q, Guo B, Hua W, Sarapulova A, Zhu L, Weidler PG, Missyul A, Knapp M, Ehrenberg H, Dsoke S. Electrochemical Investigation of Calcium Substituted Monoclinic Li 3 V 2 (PO 4 ) 3 Negative Electrode Materials for Sodium- and Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304102. [PMID: 37394707 DOI: 10.1002/smll.202304102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Herein, the electrochemical properties and reaction mechanism of Li3-2 x Cax V2 (PO4 )3 /C (x = 0, 0.5, 1, and 1.5) as negative electrode materials for sodium-ion/potassium-ion batteries (SIBs/PIBs) are investigated. All samples undergo a mixed contribution of diffusion-controlled and pseudocapacitive-type processes in SIBs and PIBs via Trasatti Differentiation Method, while the latter increases with Ca content increase. Among them, Li3 V2 (PO4 )3 /C exhibits the highest reversible capacity in SIBs and PIBs, while Ca1.5 V2 (PO4 )3 /C shows the best rate performance with a capacity retention of 46% at 20 C in SIBs and 47% at 10 C in PIBs. This study demonstrates that the specific capacity of this type of material in SIBs and PIBs does not increase with the Ca-content as previously observed in lithium-ion system, but the stability and performance at a high C-rate can be improved by replacing Li+ with Ca2+ . This indicates that the insertion of different monovalent cations (Na+ /K+ ) can strongly influence the redox reaction and structure evolution of the host materials, due to the larger ion size of Na+ and K+ and their different kinetic properties with respect to Li+ . Furthermore, the working mechanism of both LVP/C and Ca1.5 V2 (PO4 )3 /C in SIBs are elucidated via in operando synchrotron diffraction and in operando X-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Qiang Fu
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Bingrui Guo
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Weibo Hua
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Angelina Sarapulova
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Lihua Zhu
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces (COOI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Missyul
- CELLS-ALBA Synchrotron, Cerdanyola del Valles, Barcelona, E-08290, Spain
| | - Michael Knapp
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Helmut Ehrenberg
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|