1
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Wei C, Yu S, Meng Y, Xu Y, Hu Y, Cao Z, Huang Z, Liu L, Luo Y, Chen H, Chen Z, Zhang Z, Wang L, Zhao Z, Zheng Y, Liao Q, Liao X. Octopus Tentacle-Inspired In-Sensor Adaptive Integral for Edge-Intelligent Touch Intention Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420501. [PMID: 40289890 DOI: 10.1002/adma.202420501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Electronics continue to drive technological innovation and diversified applications. To ensure efficiency and effectiveness across various interactive contexts, the ability to adjust operating functions or parameters according to environmental shifts or user requirements is highly desirable. However, due to the inherent limitations of nonadaptive device structures and materials, the current development of touch electronics faces challenges, e.g., limited hardware resources, poor adaptability, weak deformation stability, and bottlenecks in sensing data processing. Here, a reconfigurable and adaptive intelligent (RAI) touch sensor is proposed, inspired by octopus's tentacle cognitive behavior. It realizes remarkable deformability and highly efficient multitouch interactions. The geometric progression structure of the sensing element equips the RAI touch sensor with a unique integrated-in-sensing mechanism and programmable logic. This greatly compresses sensing data dimensionality at the edge, yielding concise and undistorted interactive signals. By leveraging the advantages of hard-soft bonding and interface modulation of functional materials, the adaptability is achieved with a 200% strain range a 180° twist tolerance, and exceptional deformation stability of >10 000 cycles. The diverse application-specific configurations of the RAI touch sensor, enable a dynamic intention recognition accuracy of over 99%, advancing next-generation Internet of Things and edge computing research and innovation.
Collapse
Affiliation(s)
- Chao Wei
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Shifan Yu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Yifan Meng
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijing Xu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Yu Hu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Zhicheng Cao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Zijian Huang
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Lei Liu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Yanhao Luo
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Hongyu Chen
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Zhong Chen
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| | - Zeliang Zhang
- Audiowell Electronics (Zhaoqing) Co., Ltd, Zhaoqing, 526238, China
| | - Liang Wang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenyu Zhao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinqin Liao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
4
|
Xu X, Xu Q, Ma J, Deng Y, An W, Yan K, Zong Y, Zhang F. Progress in Protein-Based Hydrogels for Flexible Sensors: Insights from Casein. ACS Sens 2024; 9:5642-5664. [PMID: 39466787 DOI: 10.1021/acssensors.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In recent years, the rapid advancement of flexible sensors as the cornerstone of flexible electronics has propelled a flourishing evolution within the realm of flexible electronics. Unlike traditional flexible devices, hydrogel flexible sensors have characteristic advantages such as biocompatibility, adhesion, and adjustable mechanical properties and have similar properties to human skin. Especially, biobased hydrogels have become the preferred substrate material for flexible sensors due to increased environmental pressures caused by the scarcity of petrochemical resources. In this regard, proteins possess advantages such as diverse amino acid compositions, adjustable advanced structures, chemical modifiability, the application of protein engineering techniques, and the ability to respond to various external stimuli. These enable the hydrogels constructed from them to have greater designability, flexibility, and adaptability. As a result, their applications in manufacturing various types of sensors have experienced rapid growth. This work systematically reviews the sensing mechanism of protein-based hydrogels, focusing on the preparation of protein-based hydrogels and the optimization of flexible sensors mainly from the perspective of a typical type of animal-derived protein casein. In addition, while the potential of casein is recognized, the limitations of casein-based hydrogels in flexible sensor applications are explored, and insights are provided into the development trends of next-generation sensors based on casein-based hydrogel materials.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Yanting Deng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Wen An
- Engineering Research Center of Advanced Ferroelectric Functional Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013 Shaanxi, China
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Yan Zong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Fan Zhang
- College of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
5
|
Sun X, Zhu S, He D, Lin Y, Ye T. Using highly water-stable wool keratin/CsPbBr 3 nanocrystals as a portable amine-responsive fluorescent test strip for onsite visual detection of food freshness. J Colloid Interface Sci 2024; 669:295-304. [PMID: 38718583 DOI: 10.1016/j.jcis.2024.04.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Perovskite nanocrystals (PNCs) have emerged as promising candidates for fluorescent probes owing to their outstanding photoelectric properties. However, the conventional CsPbBr3 (CPB) NCs are extremely unstable in water, which has seriously limited their sensing applications in water environment. Herein, we present a powerful ligand engineering strategy for fabricating highly water-stable CPB NCs by using a biopolymer of wool keratin (WK) as the passivator and the polyaryl polymethylene isocyanate (PAPI) as the cross-linking agent. In particular, WK with multi-functional groups can serve as a polydentate ligand to firmly passivate CPB NCs by the ligand exchange process in hot toluene; and then the addition of PAPI can further encapsulate CPB NCs by the crosslinking reaction between PAPI and WK. Consequently, the as-prepared CPB/WK-PAPI NCs can maintain ∼ 80 % of their relative photoluminescence (PL) intensity after 60 days in water, and they still maintain ∼ 40 % of their relative PL intensity even after 512 days in the same environment, which is one of the best water stabilities compared previously reported polymer passivation methods. As a proof-of their application, the portable CPB/WK-PAPI NCs-based test strips are further developed as a fluorescent nanoprobe for real-time and visual monitoring amines and food freshness. Among various amine analytes, the as-prepared test strips exhibit higher sensitivity towards conjugated amines, achieving a remarkable detection limit of 18.3 nM for pyrrole. Our research not only introduces an innovative strategy involving natural biopolymers to enhance the water stability of PNCs, but also highlights the promising potential of PNCs for visually and portably detecting amines and assessing food freshness.
Collapse
Affiliation(s)
- Xiaochen Sun
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | - Shuihong Zhu
- Department of Physics, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Dongqing He
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, Heilongjiang, P. R. China
| | - Youhui Lin
- Department of Physics, Xiamen University, Xiamen 361005, Fujian, P. R. China..
| | - Tengling Ye
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China.; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China..
| |
Collapse
|
6
|
Liu J, Li S, Li S, Tian J, Li H, Pan Z, Lu L, Mao Y. Recent Advances in Natural-Polymer-Based Hydrogels for Body Movement and Biomedical Monitoring. BIOSENSORS 2024; 14:415. [PMID: 39329790 PMCID: PMC11430138 DOI: 10.3390/bios14090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Saisai Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Shuoze Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinyue Tian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Liu J, Qiu Z, Kan H, Guan T, Zhou C, Qian K, Wang C, Li Y. Incorporating Machine Learning Strategies to Smart Gloves Enabled by Dual-Network Hydrogels for Multitask Control and User Identification. ACS Sens 2024; 9:1886-1895. [PMID: 38529839 DOI: 10.1021/acssensors.3c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Smart gloves are often used in human-computer interaction scenarios due to their portability and ease of integration. However, their application in the field of information security has been less studied. Herein, we propose a smart glove using an iontronic capacitive sensor with significant pressure-sensing performance. Besides, an operator interface has been developed to match the smart glove, which is capable of multitasking integration of mouse movement, music playback, game control, and message typing in Internet chat rooms by capturing and encoding finger-tapping movements. In addition, by integrating machine learning, we can mine the characteristics of individual behavioral habits contained in the sensor signals and, based on this, achieve a deep binding of the user to the smart glove. The proposed smart glove can greatly facilitate people's lives, as well as explore a new strategy in research on the application of smart gloves in data security.
Collapse
Affiliation(s)
- Jianwen Liu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan 250022, China
| | - Zhicheng Qiu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan 250022, China
| | - Hao Kan
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan 250022, China
| | - Tao Guan
- Sansan Intelligence Technology (Rizhao) Co., LTD, Rizhao 276800, China
| | - Changyang Zhou
- Sansan Intelligence Technology (Rizhao) Co., LTD, Rizhao 276800, China
| | - Kai Qian
- School of Integrated Circuits, Shandong University, Jinan 250101, China
| | - Cong Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology Harbin 150001, China
| | - Yang Li
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan 250022, China
- School of Integrated Circuits, Shandong University, Jinan 250101, China
| |
Collapse
|
8
|
Yang H, Ying L, Wang Y, Farooq A, Wang P, Wang Z. Versatile, durable conductive networks assembled from MXene and sericin-modified carbon nanotube on polylactic acid textile micro-etched via deep eutectic solvent. J Colloid Interface Sci 2024; 658:648-659. [PMID: 38134673 DOI: 10.1016/j.jcis.2023.11.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023]
Abstract
Integration of polylactic acid (PLA) textiles with conductive MXene holds great promise for fabricating green electronic textiles (e-textiles) and reducing the risk of electronic waste. However, constructing robust conductive networks on PLA fibers remains challenging due to the susceptibility of MXene to oxidation and the hydrophobicity of PLA fibers. Here, we demonstrate a versatile, degradable, and durable e-textile by decorating the deep eutectic solvent (DES) micro-etched PLA textile with MXene and sericin-modified carbon nanotube hybrid (MXene@SSCNT). The co-assembly of MXene with SSCNT in water not only enhanced its oxidative stability but also formed synergistic conductive networks with biomimetic leaf-like nanostructures on PLA fiber. Consequently, the MXene@SSCNT coated PLA textile (MCP-textile) exhibited high electrical conductivity (5.5 Ω·sq-1), high electromagnetic interference (EMI) shielding efficiency (34.20 dB over X-band), excellent electrical heating performance (66.8 ℃, 5 V), and sensitive humidity response. Importantly, the interfacial bonding between the MXene@SSCNT and fibers was significantly enhanced by DES micro-etching, resulting in superior wash durability of MCP-textile. Furthermore, the MCP-textile also showed satisfactory breathability, flame retardancy, and degradability. Given these outstanding features, MCP-textile can serve as a green and versatile e-textile with tremendous potential in EMI shielding, personal thermal management, and respiratory monitoring.
Collapse
Affiliation(s)
- Haiwei Yang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Lili Ying
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yong Wang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Amjad Farooq
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Peng Wang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Zongqian Wang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
9
|
Zhu S, Wang S, Huang Y, Tang Q, Fu T, Su R, Fan C, Xia S, Lee PS, Lin Y. Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils. Nat Commun 2024; 15:118. [PMID: 38168050 PMCID: PMC10761753 DOI: 10.1038/s41467-023-44481-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Natural structural materials often possess unique combinations of strength and toughness resulting from their complex hierarchical assembly across multiple length scales. However, engineering such well-ordered structures in synthetic materials via a universal and scalable manner still poses a grand challenge. Herein, a simple yet versatile approach is proposed to design hierarchically structured hydrogels by flow-induced alignment of nanofibrils, without high time/energy consumption or cumbersome postprocessing. Highly aligned fibrous configuration and structural densification are successfully achieved in anisotropic hydrogels under ambient conditions, resulting in desired mechanical properties and damage-tolerant architectures, for example, strength of 14 ± 1 MPa, toughness of 154 ± 13 MJ m-3, and fracture energy of 153 ± 8 kJ m-2. Moreover, a hydrogel mesoporous framework can deliver ultra-fast and unidirectional water transport (maximum speed at 65.75 mm s-1), highlighting its potential for water purification. This scalable fabrication explores a promising strategy for developing bioinspired structural hydrogels, facilitating their practical applications in biomedical and engineering fields.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, PR China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, PR China
| | - Yifan Huang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Qiyun Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Tianqi Fu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, PR China
| | - Riyan Su
- Shandong Huankeyuan Environmental Testing Co., Ltd, Jinan, 250013, PR China
| | - Chaoyu Fan
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, PR China
| | - Shuang Xia
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, PR China
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, PR China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|