1
|
Guo C, Lin L, Wang Y, Jing J, Gong Q, Luo K. Nano drug delivery systems for advanced immune checkpoint blockade therapy. Theranostics 2025; 15:5440-5480. [PMID: 40303342 PMCID: PMC12036873 DOI: 10.7150/thno.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been widely utilized in the first-line therapy of various types of cancer. However, immune-related adverse events (irAEs) and resistance to ICIs remain intractable challenges for immune checkpoint blockade (ICB) therapy during clinic treatment. Nano drug delivery systems (NDDSs) have shown promising potential to improve anticancer efficacy and reduce side effects of small molecular drugs. The combination of nanotechnology and ICB provides new opportunities to overcome the challenges of immunotherapy. Nanoplatforms have been employed for direct delivery of ICIs, and they are preferred vehicles for combination therapy of ICIs and other therapeutic agents. In this review, the strategies of using NDDSs for advancing ICB therapy in recent years are surveyed, emphasizing the employment of NDDSs for combination treatment by ICIs and other agents to manipulate antitumor immunity. Analysis of current strategies for applying NDDSs for ICB leads to future research directions and development trends.
Collapse
Affiliation(s)
- Chenqi Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Lin
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yihan Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Chengdu 610041, China
| | - Jing Jing
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Moura LIF, Malfanti A, Matos AI, Peres C, Armiñán A, Duro‐Castaño A, Conejos‐Sánchez I, Medel M, Đorđević S, Carrascosa P, Carreira B, Acúrcio RC, Xavier‐Ferreira H, Hernández‐Barranco A, Castellano E, Roselló E, Machado JC, Peinado H, Vicent MJ, Florindo HF. Off-The-Shelf Multivalent Nanoconjugate Cancer Vaccine Rescues Host Immune Response against Melanoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417348. [PMID: 39937158 PMCID: PMC12016742 DOI: 10.1002/adma.202417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Tumor-associated antigen-based cancer vaccines suffer from limited clinical success compared to alternative immunotherapies in melanoma, an aggressive skin cancer with an immunosuppressive tumor microenvironment. The anti-tumor potential of a multivalent nanoconjugate cancer vaccine platform - a cross-linked star-shaped polyglutamate carrier (StCl) with marked lymphotropic character conjugated with melanoma-associated peptide antigens is evaluated through redox-responsive linkers. The co-delivery of melanoma-associated peptide antigens by the nanoconjugate platform induced significant effector immune responses in a mouse melanoma model. The nanoconjugate platform synergized with a PD-1 inhibitor to revert the immunosuppressive melanoma tumor microenvironment by improving cytotoxic T-cell infiltration, which prompted a superior anti-tumor effect with prolonged overall survival without acute organ toxicity. The antigen-specific anti-tumor immune response induced by the nanoconjugate platform is also validated in a melanoma patient-derived xenograft mouse model. A promising, versatile StCl-based platform is reported for generating off-the-shelf multivalent nanoconjugate cancer vaccines for the safe and efficient immunotherapeutic treatment of melanoma.
Collapse
Affiliation(s)
- Liane IF Moura
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Alessio Malfanti
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Present address:
Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaVia F. Marzolo 5Padova35131Italy
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Ana Armiñán
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - Aroa Duro‐Castaño
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Present address:
CurapathAv. Benjamin Franklin 19Paterna46980Spain
| | - Inmaculada Conejos‐Sánchez
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - María Medel
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - Snežana Đorđević
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
- Present address:
Tosoh Bioscience GmbHIm Leuschnerpark 4, Griesheim64347HesseGermany
| | - Paula Carrascosa
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Helena Xavier‐Ferreira
- i3S – Instituto de Investigação e Inovação em SaúdeMedical Faculty of PortoUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Alberto Hernández‐Barranco
- Microenvironment and Metastasis LaboratoryDepartment of Molecular OncologySpanish National Cancer Research Center (CNIO)C. de Melchor Fernández Almagro, 3Madrid28029Spain
| | - Elena Castellano
- Microenvironment and Metastasis LaboratoryDepartment of Molecular OncologySpanish National Cancer Research Center (CNIO)C. de Melchor Fernández Almagro, 3Madrid28029Spain
| | - Esther Roselló
- Department of PathologyHospital General Universitario de ValenciaAv. de les Tres Creus, 2, L'OliveretaValencia46014Spain
| | - José C. Machado
- i3S – Instituto de Investigação e Inovação em SaúdeMedical Faculty of PortoUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Héctor Peinado
- Microenvironment and Metastasis LaboratoryDepartment of Molecular OncologySpanish National Cancer Research Center (CNIO)C. de Melchor Fernández Almagro, 3Madrid28029Spain
| | - María J. Vicent
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| |
Collapse
|
3
|
Chen C, Xu Y, Meng H, Bao H, Hu Y, Li C, Xia D. Nano-Oncologic Vaccine for Boosting Cancer Immunotherapy: The Horizons in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:122. [PMID: 39852737 PMCID: PMC11767563 DOI: 10.3390/nano15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation and promoting robust antitumor responses. By improving antigen presentation and localizing immune activation within the tumor microenvironment, nano-oncologic vaccines can significantly increase the efficacy of cancer immunotherapy, particularly when combined with other treatment modalities. This review highlights the mechanisms through which nano-oncologic vaccines operate, their potential to overcome existing limitations in cancer treatment, and ongoing advancements in design. Additionally, it discusses the targeted delivery approach, such as EPR effects, pH response, ultrasonic response, and magnetic response. The combination therapy effects with photothermal therapy, radiotherapy, or immune checkpoint inhibitors are also discussed. Overall, nano-oncologic vaccines hold great promise for changing the landscape of cancer treatment and advancing personalized medicine, paving the way for more effective therapeutic strategies tailored to individual patient needs.
Collapse
Affiliation(s)
- Chao Chen
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| | - Yue Xu
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| | - Hui Meng
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| | - Hongyi Bao
- School of Medicine, Nantong University, Nantong 226019, China;
| | - Yong Hu
- Nanjing University (Suzhou) High-Tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China;
| | - Chunjian Li
- Center of Forecasting and Analysis, Nantong University, Nantong 226019, China
| | - Donglin Xia
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| |
Collapse
|
4
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
5
|
Carvalho HMB, Fidalgo TAS, Acúrcio RC, Matos AI, Satchi-Fainaro R, Florindo HF. Better, Faster, Stronger: Accelerating mRNA-Based Immunotherapies With Nanocarriers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2017. [PMID: 39537215 DOI: 10.1002/wnan.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Messenger ribonucleic acid (mRNA) therapeutics are attracting attention as promising tools in cancer immunotherapy due to their ability to leverage the in vivo expression of all known protein sequences. Even small amounts of mRNA can have a powerful effect on cancer vaccines by promoting the synthesis of tumor-specific antigens (TSA) or tumor-associated antigens (TAA) by antigen-presenting cells (APC). These antigens are then presented to T cells, eliciting strong antitumor immune stimulation. The potential of mRNA can be further enhanced by expressing immunomodulatory agents, such as cytokines, antibodies, and chimeric antigen receptors (CAR), enhancing tumor immunity. Recent research also explores mRNA-encoded tumor death inducers or tumor microenvironment (TME) modulators. Despite its promise, the clinical translation of mRNA-based anticancer strategies faces challenges, including inefficient targeted delivery in vivo, failure of endosomal escape, and inadequate intracellular mRNA release, resulting in poor transfection efficiencies. Inspired by the approval of lipid nanoparticle-loaded mRNA vaccines against coronavirus disease 2019 (COVID-19) and the encouraging outcomes of mRNA-based cancer therapies in trials, innovative nonviral nanotechnology delivery systems have been engineered. These aim to advance mRNA-based cancer immunotherapies from research to clinical application. This review summarizes recent preclinical and clinical progress in lipid and polymeric nanomedicines for delivering mRNA-encoded antitumor therapeutics, including cytokines and antibody-based immunotherapies, cancer vaccines, and CAR therapies. It also addresses advanced delivery systems for direct oncolysis or TME reprogramming and highlights key challenges in translating these therapies to clinical use, exploring future perspectives, including the role of artificial intelligence and machine learning in their development.
Collapse
Affiliation(s)
- Henrique M B Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago A S Fidalgo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Hou Y, Li Y, Zhang Y, Zhang J, Wu D. Current status and future directions of nanovaccine for cancer: a bibliometric analysis during 2004-2023. Front Immunol 2024; 15:1423212. [PMID: 39136021 PMCID: PMC11317272 DOI: 10.3389/fimmu.2024.1423212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Nanovaccine treatment is an exciting area of research in immunology and personalized medicine, holding great promise for enhancing immune responses and targeting specific diseases. Their small size allows efficient uptake by immune cells, leading to robust immune activation. They can incorporate immune-stimulating molecules to boost vaccine efficacy. Therefore, nanovaccine can be personalized to target tumor-specific antigens, activating the immune system against cancer cells. Currently, there have been ample evidence showing the effectiveness and potential of nanovaccine as a treatment for cancer. However, there was rare bibliometric analysis of nanovaccine for cancer. Here we performed a bibliometric and visual analysis of published studies related to nanovaccine treatment for cancer, providing the trend of future development of nanovaccine. Methods We collected the literatures based on the Web of Science Core Collection SCI-Expanded database. The bibliometric analysis was performed via utilizing visualization analysis tools VOSviewer, Co-Occurrence (COOC), Citespace, Bibliometrix (R-Tool of R-Studio), and HitCite. Results A total of 517 literatures were included in this study. China is the country with the most publications and the highest total local citation score (TLCS). The Chinese Academy of Sciences holds the largest research count in this field and the most prolific author is Deling Kong from Nankai University. The most prominent journal for publishing in this area is Biomaterials. The researches mainly focus on the therapeutic process of tumor nanovaccines, the particle composition and the application of nanovaccines, suggesting the potential hotspots and trends of nanovaccine. Conclusion In this study, we summarized the characteristics and variation trends of publications involved in nanovaccine, and categorized the most influential countries, institutions, authors, journals, hotspots and trends regarding the nanovaccine for cancer. With the continuous development of nanomaterials and tumor immunotherapy, nanovaccine for cancer provides a research field of significant clinical value and potential application.
Collapse
Affiliation(s)
- Yuhui Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Youao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Juan Zhang
- Shenzhen Key Laboratory of Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|