1
|
Li M, Zhang Y, Wu Y, Lei S, Fang H, Huang P, Lin J. Activatable Chemodynamic Theranostics through Molecular Imaging-Energized Companion Diagnostics. NANO LETTERS 2025; 25:7568-7576. [PMID: 40294125 DOI: 10.1021/acs.nanolett.5c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chemodynamic therapy (CDT) is a promising tumor treatment strategy, yet real-time in vivo monitoring remains challenging. Here, we report an activatable molecular imaging-energized companion diagnostics sensor (CFG) for real-time monitoring of CDT. CFG leverages glucose oxidase (GOx) to generate hydrogen peroxide to prime the Fenton reaction, while simultaneously producing H+ to activate the fluorescence (FL) and photoacoustic (PA) signals. A positive correlation between the FL/PA intensities and the Fenton reaction efficiency is found (Pearson's r = 0.98 for ·OH-FL, 0.90 for ·OH-PA), enabling dynamic visualization of the GOx catalysis-primed CDT. Also, H+-activated photothermal effect of CFG enables FL/PA imaging to pinpoint the optimal irradiation time for maximizing mild hyperthermia-enhanced CDT. Therefore, by tracing the H+ dynamics, tailored feedback is collected for therapeutic response monitoring and treatment guidance, and the cascade effect between enzyme catalysis, mild hyperthermia, and CDT is revealed.
Collapse
Affiliation(s)
- Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yumeng Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Hui Fang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Zhang Z, Cheng W, Li H, Li X, Zhang X, Li Y, Wang B. Lactate-depleted pillar[5]arene-based chiral supramolecular nanovesicles for L-glucose-mediated tumor-specific chemodynamic- and photodynamic-synergistic therapy. J Mater Chem B 2025; 13:5058-5069. [PMID: 40208309 DOI: 10.1039/d5tb00436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The distinct interactions of D/L-glucose with cells and biological systems have garnered significant attention. However, the impact of chiral glucose-modified nanomaterials on cancer diagnosis and treatment remains largely unexplored. Here, based on the host-guest interaction between D-/L-glucose-modified pillar[5]arene (D-/L-CP5) serving as the host molecule and Fe-porphyrin derivatives (FeTPPNHC) acting as the guest, an acid-responsive chiral supramolecular vesicle was constructed for transporting lactate oxidases (LOx) (denoted as LOx@D-/L-CP5⊃FeTPPNHC), aiming to enhance chirality-mediated tumor-specific cascade chemodynamic therapy (CDT) and photodynamic therapy (PDT) through the depletion of lactic acid (LA). Surprisingly, the L-glucose-mediated chiral vesicles exhibit remarkable chirality recognition and lactate depletion capabilities, which were higher than the D-glucose-mediated chiral vesicles. Once internalized by cancer cells, L-supramolecular nanomicelles can directly consume LA to generate a considerable amount of H2O2, which can then be converted into ˙OH and 1O2. In vitro and in vivo studies demonstrate the high tumor specificity and therapeutic efficacy of LOx@LCP5⊃FeTPPNHC. The findings suggest that chiral glucose-modified nanomaterials hold great potential in targeted cancer treatment, paving the way for the development of innovative cancer therapeutics based on their unique interactions with biological systems.
Collapse
Affiliation(s)
- Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hui Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000, P. R. China
| | - Xinxin Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xuan Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000, P. R. China
| | - Yu Li
- Dr. Y. Li, Department of Magnetic Resonance, The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
4
|
Li Y, Fu B, Jiang W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11552-11577. [PMID: 39936939 DOI: 10.1021/acsami.4c20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nanozymes, nanomaterials with intrinsic enzyme activity, have garnered significant attention in recent years due to their catalytic abilities comparable to natural enzymes, cost-effectiveness, high catalytic activities, and stability against environmental fluctuations. As functional analogs of natural enzymes, nanozymes participate in various critical metabolic processes, including glucose metabolism, lactate metabolism, and the maintenance of redox homeostasis, all of which are essential for normal cellular functions. However, disruptions in these metabolic pathways frequently promote tumorigenesis and progression, making them potential therapeutic targets. While several therapies targeting tumor metabolism are currently in clinical or preclinical stages, their efficacy requires further enhancement. Consequently, nanozymes that target tumor metabolism are regarded as a promising therapeutic strategy. Despite extensive studies investigating the application of nanozymes in tumor metabolism, relevant reviews are relatively scarce. This article first introduces the physicochemical properties and biological behaviors of nanozymes. Subsequently, we analyze the role of nanozymes in tumor metabolism and explore their potential applications in tumor therapy. In conclusion, this review aims to foster innovative research in related fields and advance the development of nanozyme-based strategies for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yikai Li
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Bowen Fu
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
5
|
Chen X, Zhang F, Lu C, Wu R, Yang B, Liao T, Du B, Wu F, Ding J, Fang S, Zhao Z, Chen M, Shu G, Chen W, Ji J. Lactate-Fueled Theranostic Nanoplatforms for Enhanced MRI-Guided Ferroptosis Synergistic with Immunotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9155-9172. [PMID: 39901437 DOI: 10.1021/acsami.4c21890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Treatment for hepatocellular carcinoma (HCC) may be improved with ferroptosis, a regulated form of cell death. However, the sensitivity of HCC to ferroptosis was strongly limited by lactic acid. In this study, a platelet membrane (PM)-engineered nanoparticle loaded with erastin, superparamagnetic iron oxide nanoparticles (SPIO) and lactate oxidase (LOX) (termed PM@ESL NPs) was designed for magnetic resonance imaging (MRI)-guided enhanced ferroptosis-immunotherapy of HCC. It was found that PM@ESL NPs could actively accumulate into the tumor due to the tumor-homing ability of PM. Subsequently, PM@ESL NPs could effectively enhance the sensitivity of HCC to ferroptosis by removing the lactic acid in the tumor. The removal of lactic acid also produces hydrogen peroxide (H2O2), which therefore converted into the cytotoxic hydroxyl radicals by the reaction of H2O2 with Fe2+/Fe3+ released from SPIO. Due to the combined ferroptosis and chemodynamic therapy (CDT), PM@ESL NPS showed a strong ability to induce immunogenic cell death (ICD), which could effectively suppress the growth and metastasis of HCC when combined with αPD-L1 immunotherapy. Furthermore, the incorporation of SPIO endows PM@ESL NPs with an outstanding MRI-T2 monitoring capability for HCC treatment. In conclusion, this study introduces a pioneering MRI-guided approach that enhances ferroptosis in tumors and synergistically improves immunotherapy.
Collapse
Affiliation(s)
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ronghua Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Baozhu Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Tingting Liao
- College of pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Baojie Du
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiayi Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gaofeng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Weiqian Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- College of pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| |
Collapse
|
6
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
7
|
Jiang M, Wang Y, Zhao X, Yu J. From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape. Front Immunol 2024; 15:1492050. [PMID: 39654883 PMCID: PMC11625744 DOI: 10.3389/fimmu.2024.1492050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Lactic acid, a key metabolic byproduct within the tumor microenvironment, has garnered significant attention for its role in immune evasion mechanisms. Tumor cells produce and release large amounts of lactic acid into the tumor microenvironment through aberrant glycolysis via the Warburg effect, leading to a drop in pH. Elevated lactic acid levels profoundly suppress proliferation capacity, cytotoxic functions, and migratory abilities of immune effector cells such as macrophages and natural killer cells at the tumor site. Moreover, lactic acid can modulate the expression of surface molecules on immune cells, interfering with their recognition and attack of tumor cells, and it regulates signaling pathways that promote the expansion and enhanced function of immunosuppressive cells like regulatory T cells, thereby fostering immune tolerance within the tumor microenvironment. Current research is actively exploring strategies targeting lactic acid metabolism to ameliorate tumor immune evasion. Key approaches under investigation include inhibiting the activity of critical enzymes in lactic acid production to reduce its synthesis or blocking lactate transporters to alter intracellular and extracellular lactate distribution. These methods hold promise when combined with existing immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies to enhance the immune system's ability to eliminate tumor cells. This could pave the way for novel combinatorial treatment strategies in clinical cancer therapy, effectively overcoming tumor immune evasion phenomena, and ultimately improving overall treatment efficacy.
Collapse
Affiliation(s)
- Mengqian Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanchun Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Wang X, Wang L, Hao Q, Cai M, Wang X, An W. Harnessing glucose metabolism with nanomedicine for cancer treatment. Theranostics 2024; 14:6831-6882. [PMID: 39479443 PMCID: PMC11519798 DOI: 10.7150/thno.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 11/02/2024] Open
Abstract
The significance of metabolic processes in cancer biology has garnered substantial attention, as they are essential for meeting the anabolic demands and maintaining the redox balance of rapidly dividing cancer cells. A distinctive feature of tumors is that cancer cells, unlike normal cells, exhibit an increased rate of glucose metabolism. They predominantly relying on aerobic glycolysis to metabolize glucose, which enables these cells to supply energy and produce the necessary building blocks for growth. Targeting glucose metabolism has led to the development of various cancer treatments. However, these agents often have limited efficacy due to factors such as poor stability and solubility, rapid clearance and an insufficient amount of the drug reaching the target site. These limitations can be overcome by preparing nano dosage forms through nanotechnology, which leverages the unique properties of nanomaterials to deliver drugs more precisely to target tissues with controlled release. In this review, we provide a comprehensive overview of the latest advancements in nanomedicine, focusing on the modulation of glucose metabolism in cancer cells. We discuss the design and application of various strategies that have been engineered to target the metabolic hallmarks of cancer. These nanomedicine strategies aim to exploit the metabolic vulnerabilities of cancer cells, thereby offering novel approaches to cancer therapy. The review highlights the innovative nanomaterials and their potential to deliver therapeutic agents more effectively, as well as the challenges and considerations in translating these nanomedicines from bench to bedside. By targeting the glucose metabolism of cancer cells, these nanoscale interventions hold promise for improving treatment outcomes and potentially overcoming the resistance that often plagues conventional cancer therapies.
Collapse
Affiliation(s)
- Xudong Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Liping Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Qingyi Hao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211195, China
| | - Meng Cai
- China National Pharmaceutical Group Co Ltd., Sinopharm Plaza, No 20 Zhichun Road, Haidian district, Beijing 100191, China
| | - Xueting Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Wenlin An
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
9
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
10
|
Fan Z, Ye M, Liu D, Zhou W, Zeng T, He S, Li Y. Lactate drives the ESM1-SCD1 axis to inhibit the antitumor CD8 + T-cell response by activating the Wnt/β-catenin pathway in ovarian cancer cells and inducing cisplatin resistance. Int Immunopharmacol 2024; 137:112461. [PMID: 38897128 DOI: 10.1016/j.intimp.2024.112461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Ovarian cancer (OC) is a gynecological malignancy that results in a global threat to women's lives. Lactic acid, a key metabolite produced from the glycolytic metabolism of glucose molecules, is correlated with tumor immune infiltration and platinum resistance. In our previous study, we found that endothelial cell-specific molecule 1 (ESM1) plays a key role in OC progression. This study revealed that lactate could upregulate ESM1, which enhances SCD1 to attenuate the antitumor CD8+ T-cell response. ESM1 and SCD1 expression levels were significantly greater in OC patients with high lactic acid levels than in those with low lactic acid levels. Further mechanistic studies suggested that the Wnt/β-catenin pathway was inactivated after ESM1 knockdown and rescued by SCD1 overexpression. IC50 analysis indicated that the ESM1-SCD1 axis induces the resistance of OC cells to platinum agents, including cisplatin, carboplatin, and oxaliplatin, by upregulating P-gp. In conclusion, our study indicated that the induction of SCD1 by lactic acid-induced ESM1 can impede the CD8+ T-cell response against tumors and promote resistance to cisplatin by activating the Wnt/β-catenin pathway in ovarian cancer. Consequently, targeting ESM1 may have considerable therapeutic potential for modulating the tumor immune microenvironment and enhancing drug sensitivity in OC patients.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Mingzhu Ye
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Sili He
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
11
|
Wang J, Liu Y, Cui T, Yang H, Lin L. Current progress in the regulation of endogenous molecules for enhanced chemodynamic therapy. Chem Sci 2024; 15:9915-9926. [PMID: 38966366 PMCID: PMC11220580 DOI: 10.1039/d4sc02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Chemodynamic therapy (CDT) is a potential cancer treatment strategy, which relies on Fenton chemistry to transform hydrogen peroxide (H2O2) into highly cytotoxic reactive oxygen species (ROS) for tumor growth suppression. Although overproduced H2O2 in cancerous tissues makes CDT a feasible and specific tumor therapeutic modality, the treatment outcomes of traditional chemodynamic agents still fall short of expectations. Reprogramming cellular metabolism is one of the hallmarks of tumors, which not only supports unrestricted proliferative demands in cancer cells, but also mediates the resistance of tumor cells against many antitumor modalities. Recent discoveries have revealed that various cellular metabolites including H2O2, iron, lactate, glutathione, and lipids have distinct effects on CDT efficiency. In this perspective, we intend to provide a comprehensive summary of how different endogenous molecules impact Fenton chemistry for a deep understanding of mechanisms underlying endogenous regulation-enhanced CDT. Moreover, we point out the current challenges and offer our outlook on the future research directions in this field. We anticipate that exploring CDT through manipulating metabolism will yield significant advancements in tumor treatment.
Collapse
Affiliation(s)
- Jun Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yina Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Tingting Cui
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore Singapore 117597 Singapore
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
12
|
Yao Y, Xu R, Shao W, Tan J, Wang S, Chen S, Zhuang A, Liu X, Jia R. A Novel Nanozyme to Enhance Radiotherapy Effects by Lactic Acid Scavenging, ROS Generation, and Hypoxia Mitigation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403107. [PMID: 38704679 PMCID: PMC11234405 DOI: 10.1002/advs.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Uveal melanoma (UM) is a leading intraocular malignancy with a high 5-year mortality rate, and radiotherapy is the primary approach for UM treatment. However, the elevated lactic acid, deficiency in ROS, and hypoxic tumor microenvironment have severely reduced the radiotherapy outcomes. Hence, this study devised a novel CoMnFe-layered double oxides (LDO) nanosheet with multienzyme activities for UM radiotherapy enhancement. On one hand, LDO nanozyme can catalyze hydrogen peroxide (H2O2) in the tumor microenvironment into oxygen and reactive oxygen species (ROS), significantly boosting ROS production during radiotherapy. Simultaneously, LDO efficiently scavenged lactic acid, thereby impeding the DNA and protein repair in tumor cells to synergistically enhance the effect of radiotherapy. Moreover, density functional theory (DFT) calculations decoded the transformation pathway from lactic to pyruvic acid, elucidating a previously unexplored facet of nanozyme activity. The introduction of this innovative nanomaterial paves the way for a novel, targeted, and highly effective therapeutic approach, offering new avenues for the management of UM and other cancer types.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ru Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shuhan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
13
|
Lin P, Lu Y, Zheng J, Lin Y, Zhao X, Cui L. Strategic disruption of cancer's powerhouse: precise nanomedicine targeting of mitochondrial metabolism. J Nanobiotechnology 2024; 22:318. [PMID: 38849914 PMCID: PMC11162068 DOI: 10.1186/s12951-024-02585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Wei X, Han R, Gao Y, Song P, Guo Z, Hou Y, Yu J, Tang K. Boosting Energy Deprivation by Synchronous Interventions of Glycolysis and Oxidative Phosphorylation for Bioenergetic Therapy Synergetic with Chemodynamic/Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401738. [PMID: 38489668 PMCID: PMC11187878 DOI: 10.1002/advs.202401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Bioenergetic therapy is emerging as a promising therapeutic approach. However, its therapeutic effectiveness is restricted by metabolic plasticity, as tumor cells switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) to compensate for energy. Herein, Metformin (MET) and BAY-876 (BAY) co-loaded CuFe2O4 (CF) nanoplatform (CFMB) is developed to boost energy deprivation by synchronous interventions of glycolysis and OXPHOS for bioenergetic therapy synergetic with chemodynamic/photothermal therapy (CDT/PTT). The MET can simultaneously restrain glycolysis and OXPHOS by inhibiting hexokinase 2 (HK2) activity and damaging mitochondrial function to deprive energy, respectively. Besides, BAY blocks glucose uptake by inhibiting glucose transporter 1 (GLUT1) expression, further potentiating the glycolysis repression and thus achieving much more depletion of tumorigenic energy sources. Interestingly, the upregulated antioxidant glutathione (GSH) in cancer cells triggers CFMB degradation to release Cu+/Fe2+ catalyzing tumor-overexpressed H2O2 to hydroxyl radical (∙OH), both impairing OXPHOS and achieving GSH-depletion amplified CDT. Furthermore, upon near-infrared (NIR) light irradiation, CFMB has a photothermal conversion capacity to kill cancer cells for PTT and improve ∙OH production for enhanced CDT. In vivo experiments have manifested that CFMB remarkably suppressed tumor growth in mice without systemic toxicity. This study provides a new therapeutic modality paradigm to boost bioenergetic-related therapies.
Collapse
Affiliation(s)
- Xiangjun Wei
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Renlu Han
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Yun Gao
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Pengxin Song
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Zhen Guo
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Yafei Hou
- Department of Microelectronics Science and EngineeringSchool of Physical Science and TechnologyNingbo UniversityNingbo315211China
| | - Jiancheng Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211China
| | - Keqi Tang
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211China
| |
Collapse
|
15
|
Wang Z, Dong M, Pan Y, Zhang L, Lei H, Zheng Y, Shi Y, Liu S, Li N, Wang Y. Turning Threat to Therapy: A Nanozyme-Patch in Surgical Bed for Convenient Tumor Vaccination by Sustained In Situ Catalysis. Adv Healthc Mater 2024; 13:e2304384. [PMID: 38301259 DOI: 10.1002/adhm.202304384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Complete surgical resection of tumor is difficult as the invasiveness of cancer, making the residual tumor a lethal threat to patients. The situation is deteriorated by the immune suppression state after surgery, which further nourishes tumor recurrence and metastasis. Immunotherapy is promising to combat tumor metastasis, but is limited by severe toxicity of traditional immunostimulants and complexity of multiple functional units. Here, it is reported that the simple "trans-surgical bed" delivery of Cu2- xSe nanozyme (CSN) by a microneedle-patch can turn the threat to therapy by efficient in situ vaccination. The biocompatible CSN exhibits both peroxidase and glutathione oxidase-like activities, efficiently exhausting glutathione, boosting free radical generation, and inducing immunogenic cell death. The once-for-all inserting of the patch on surgical bed facilitates sustained catalytic action, leading to drastic decrease of recurrence rate and complete suppression of tumor-rechallenge in cured mice. In vivo mechanism interrogation reveals elevated cytotoxic T cell infiltration, re-educated macrophages, increased dendritic cell maturation, and memory T cells formation. Importantly, preliminary metabolism and safety evaluation validated that the metal accumulation is marginable, and the important biochemical indexes are in normal range during therapy. This study has provided a simple, safe, and robust tumor vaccination approach for postsurgical metastasis control.
Collapse
Affiliation(s)
- Zhaohui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Min Dong
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Yuhang Pan
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Lu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Haozhuo Lei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuanzhe Zheng
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shuang Liu
- Analytical Instrumentation Center, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- Deep-Sea Sci-Tech Core Facilities Sharing Platform, Sanya Yazhou Bay Science and Technology City, Sanya, 572000, China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yalong Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
16
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
17
|
Yang C, Zhang J, Chang M, Tan J, Yuan M, Bian Y, Liu B, Liu Z, Wang M, Ding B, Ma P, Lin J. NIR-Activatable Heterostructured Nanoadjuvant CoP/NiCoP Executing Lactate Metabolism Interventions for Boosted Photocatalytic Hydrogen Therapy and Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308774. [PMID: 37917791 DOI: 10.1002/adma.202308774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.
Collapse
Affiliation(s)
- Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|