1
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Hong R, Yu P, Zhang X, Su P, Liang H, Dong D, Wang X, Wang K. The role of cancer-associated fibroblasts in the tumour microenvironment of urinary system. Clin Transl Med 2025; 15:e70299. [PMID: 40195290 PMCID: PMC11975626 DOI: 10.1002/ctm2.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Urological tumours are a type of neoplasms that significantly jeopardise human life and wellbeing. Cancer-associated fibroblasts (CAFs), serving as the primary component of the stromal cellular milieu, form a diverse cellular cohort that exerts substantial influence on tumourigenesis and tumour progression. In this review, we summarised the literatures regarding the functions of CAFs in the urinary tumour microenvironment (TME). We primarily examined the multifaceted activities of CAFs in the TME of urological system tumours, including inhibiting tumour immunity, remodelling the extracellular matrix, promoting tumour growth, metastasis, drug resistance and their clinical applications. We also discussed potential future directions for leveraging artificial intelligence in CAFs research. KEY POINTS: The interaction of CAFs with various cell secretory factors in the TME of urological tumors. The application of CAFs in diagnosis, treatment and prognosis of urological tumors.
Collapse
Affiliation(s)
- Ri Hong
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Puguang Yu
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoli Zhang
- Department of Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Peng Su
- Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Hongyuan Liang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Dong
- College of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Xuesong Wang
- Department of UrologyPeople's Hospital of China Medical UniversityShenyangChina
- Department of UrologyPeople's Hospital of Liaoning ProvinceShenyangChina
| | - Kefeng Wang
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Liu X, Li H, Wang Y, Zhang Q, Liu Y, Liu T. LOX + iCAFs in HNSCC have the potential to predict prognosis and immunotherapy responses revealed by single cell RNA sequencing analysis. Sci Rep 2025; 15:7028. [PMID: 40016474 PMCID: PMC11868481 DOI: 10.1038/s41598-025-91036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) exhibit significant heterogeneity and are closely associated with progression, resistance to anticancer therapies, and poor prognosis in head and neck squamous cell carcinoma (HNSCC). However, the specific functional role of CAFs in HNSCC has been inadequately explored. In this study, we utilized a single-cell RNA sequencing dataset from HNSCC (GSE103322) to recluster CAFs via the Seurat pipeline. On the basis of the reported markers, we identified two CAF subtypes, LOX-myCAFs and LOX + iCAFs, and generated signature markers for each. Through unsupervised consensus clustering, we identified and characterized two molecular subtypes of HNSCC-TCGA, each exhibiting distinct dysregulated cancer hallmarks, immunological tumor microenvironments, and stemness characteristics. The robustness of the LOX + iCAF-related signature clustering, particularly in terms of prognosis and prediction of immunotherapeutic response, was validated in an ANOVA cohort via a GEO dataset (GSE159067) consisting of 102 HNSCC patients. A positive correlation was validated between the expression of LOX and that of CD86, a marker of M1 macrophage polarization. Further experiments involving the coculture of conditioned medium derived from LOX-silenced CAFs with CAL-27 and UM-SCC-1 cell lines revealed that LOX silencing led to decreased proliferation and migration of these cancer cells, which was mediated by epithelial-mesenchymal transition (EMT) through IL-34- induced CSF1R/Akt signaling. In summary, our single-cell and bulk RNA sequencing analyses revealed a LOX + iCAF-related signature that can predict the prognosis and response to immunotherapy in HNSCC patients. Additionally, the LOX gene was identified as a promising therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Xue Liu
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Huibing Li
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Yanjin Wang
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Qian Zhang
- Department of Oral Pathology, Dalian Stomatological Hospital, Changjiang Road No.935, Shahekou District, Dalian, 116021, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, East Beijing Road No.356, Huangpu District, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| | - Tingjiao Liu
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
4
|
Tong X, Xiao M, Yang J, Xu J, Wang W, Yu X, Shi S. The TMBIM1-YBX1 axis orchestrates MDSC recruitment and immunosuppressive microenvironment in pancreatic cancer. Theranostics 2025; 15:2794-2813. [PMID: 40083936 PMCID: PMC11898282 DOI: 10.7150/thno.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is notorious for its profoundly immunosuppressive nature. The complex crosstalk between diverse immune cell types and heterogeneous tumor cell populations shapes this challenging tumor immune microenvironment (TIME). In this study, the role of transmembrane BAX inhibitor motif-containing 1 (TMBIM1) in modulating the TIME and its potential as a therapeutic target in PDAC were investigated. Methods: RNA sequencing was used to assess differential gene expression between PANC-1 cells with TMBIM1 knockdown and control cells. Single-cell RNA sequencing further validated the role of TMBIM1 in modulating the expression of CCL2 and PD-L1. Mechanistic insights were gained through chromatin immunoprecipitation, ELISA, real-time quantitative PCR, and flow cytometry experiments. To evaluate the impact of TMBIM1 on immune cell dynamics, we employed an in vitro chemotaxis assay and an in vivo C57BL/6J mouse xenograft model to examine CD8+ T-cell activation and myeloid-derived suppressor cell (MDSC) infiltration. Additionally, the therapeutic potential of TMBIM1 knockdown combined with anti-PD-1 antibody treatment was investigated in PDAC animal models. Results: TMBIM1 was significantly upregulated in pancreatic cancer tissues and cell lines, driving pancreatic cancer cell proliferation, growth, and migration both in vitro and in vivo. Elevated TMBIM1 expression induced high infiltration of MDSCs and fostered an immunosuppressive tumor microenvironment. Mechanistically, TMBIM1 binds to the transcription factor Y box binding protein 1 (YBX1), which in turn increases the affinity of YBX1 for the PD-L1 and CCL2 gene promoters. This interaction results in their upregulation, leading to increased MDSC infiltration, thereby facilitating the immunosuppressive TIME in PDAC. Notably, the combination of TMBIM1 knockdown with anti-PD-1 therapy had a more potent antitumor effect than anti-PD-1 therapy alone. Conclusions: Our study reveals that the TMBIM1/YBX1 axis is a key driver of immune evasion in PDAC and shapes the immunosuppressive TIME through the upregulation of CCL2 and PD-L1 expression. These findings highlight TMBIM1 as a potential therapeutic target to sensitize PDAC to immunotherapy.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jing Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Liu Y, Tao H, Jia S, Wang H, Guo L, Hu Z, Zhang W, Liu F. Prognostic value and immune landscapes of disulfidptosis‑related lncRNAs in bladder cancer. Mol Clin Oncol 2025; 22:19. [PMID: 39776943 PMCID: PMC11706340 DOI: 10.3892/mco.2024.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
Disulfidptosis, which was recently identified, has shown promise as a potential cancer treatment. Nonetheless, the precise role of long non-coding RNAs (lncRNAs) in this phenomenon is currently unclear. To elucidate their significance in bladder cancer (BLCA), a signature of disulfidptosis-related lncRNAs (DRlncRNAs) was developed and their potential prognostic significance was explored. BLCA sample data were sourced from The Cancer Genome Atlas. A predictive signature comprising DRlncRNAs was formulated and subsequently validated. The combination of this signature with clinical characteristics facilitated the development of a nomogram with practical clinical utility. Additionally, enrichment analysis was conducted, the tumor microenvironment (TME) was assessed, the tumor mutational burden (TMB) was analyzed, and drug sensitivity was explored. Reverse transcription-quantitative PCR (RT-qPCR) was utilized to quantify lncRNA expression. The results revealed an eight-gene signature based on DRlncRNAs was established, and the predictive accuracy of the nomogram that incorporated the risk score [area under the curve (AUC)=0.733] outperformed the nomogram without it (AUC=0.703). High-risk groups were associated with pathways such as WNT signaling, focal adhesion and cell cycle pathways. The TME study revealed that high-risk patients had increased immune infiltration, whereas the TMB and tumor immune dysfunction and exclusion scores in low-risk patients indicated a potentially robust immune response. Drug sensitivity analysis identified appropriate antitumor drugs for each group. RT-qPCR experiments validated significant differences in DRlncRNAs expression between normal and BLCA cell lines. In conclusion, the prognostic risk signature, which includes the eight identified DRlncRNAs, demonstrates promise for predicting prognosis of patients with BLCA and guiding the selection of suitable immunotherapy and chemotherapy strategies.
Collapse
Affiliation(s)
- Yijiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huijing Tao
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shengjun Jia
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haozheng Wang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Long Guo
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fei Liu
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Wang Z, Li S, Zheng F, Xiong S, Zhang L, Wan L, Wang C, Liu X, Deng J. Construction and validation of prognosis and treatment outcome models based on plasma membrane tension characteristics in bladder cancer. PeerJ 2025; 13:e18816. [PMID: 39790460 PMCID: PMC11716045 DOI: 10.7717/peerj.18816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
Background Plasma membrane tension-related genes (MTRGs) are known to play a crucial role in tumor progression by influencing cell migration and adhesion. However, their specific mechanisms in bladder cancer (BLCA) remain unclear. Methods Transcriptomic, clinical and mutation data from BLCA patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Clusters associated with MTRGs were identified by consensus unsupervised cluster analysis. The genes of different clusters were analyzed by GO and KEGG gene enrichment analysis. Differentially expressed genes (DEGs) were screened from different clusters. Consensus cluster analysis of prognostic DEGs was performed to identify gene subtypes. Patients were then randomly divided into training and validation groups, and MTRG scores were constructed by logistic minimum absolute contraction and selection operator (LASSO) and Cox regression analysis. We assessed changes in clinical outcomes and immune-related factors between different patient groups. The single-cell RNA sequencing (scRNA-seq) dataset for BLCA was collected and analyzed from the Tumor Immune Single-cell Hub (TISCH) database. Biological functions were investigated using a series of experiments including quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), wound healing, transwell, etc. Results Our MTRG score is based on eight genes (HTRA1, GOLT1A, DCBLD2, UGT1A1, FOSL1, DSC2, IGFBP3 and TAC3). Higher scores were characterized by lower cancer stem cell (CSC) indices, as well as higher tumor microenvironment (TME) stromal and immune scores, suggesting that high scores were associated with poorer prognosis. In addition, some drugs such as cisplatin, paclitaxel, doxorubicin, and docetaxel exhibited lower IC50 values in the high MTRG score group. Functional experiments have demonstrated that downregulation of DCBLD2 affects tumor cell migration, but not proliferation. Conclusions Our study sheds light on the prognostic significance of MTRGs within the TME and their correlation with immune infiltration patterns, ultimately impacting patient survival in BLCA. Notably, our findings highlight DCBLD2 as a promising candidate for targeted therapeutic interventions in the clinical management of BLCA.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Sheng Li
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Fuchun Zheng
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Situ Xiong
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Lei Zhang
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Liangwei Wan
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Chen Wang
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Xiaoqiang Liu
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| | - Jun Deng
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Liu S, Feng C, Tan L, Zhang D, Li YX, Han Y, Wang C. Single-cell dissection of multifocal bladder cancer reveals malignant and immune cells variation between primary and recurrent tumor lesions. Commun Biol 2024; 7:1659. [PMID: 39702554 DOI: 10.1038/s42003-024-07343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Bladder carcinoma (BLCA) is characterized by a high rate of post-surgery recurrence and multifocality. Multifocal tumors have a higher risk of recurrence compared to single tumors, significantly impacting bladder cancer-specific mortality. However, the interregional or intraregional heterogeneity within both primary and recurrent tumors remains poorly understood. Here, we employed single-cell RNA sequencing to analyze tumor lesions from five multifocal bladder cancer patients comprising three primary tumors and two recurrent tumors. Our findings revealed that malignant cells derived from recurrent multifocal bladder cancer exhibited higher interregional transcriptional similarity and consistent cellular communication. Furthermore, our analysis uncovered that malignant cells from recurrent tumors may evade immune destruction by suppressing cytokine responses and natural killer cell activity. Notably, we identified a preference for the expression of the tryptophan metabolic enzyme IL4I1 on SPP1+ macrophages in recurrent tumors. Functional analyses have revealed that IL4I1 may promotes tumor progression in recurrent tumors by activating the aryl hydrocarbon receptor (AHR) and recruiting regulatory T cells to suppress adaptive immunity. Taken together, our study provides a comprehensive understanding of primary and recurrent multifocal bladder tumors, offering valuable resources for analyzing the multifocality and recurrence of bladder cancer.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Linyi Tan
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
8
|
Rastegar-Pouyani N, Abdolvahab MH, Farzin MA, Zare H, Kesharwani P, Sahebkar A. Targeting cancer-associated fibroblasts with pirfenidone: A novel approach for cancer therapy. Tissue Cell 2024; 91:102624. [PMID: 39581071 DOI: 10.1016/j.tice.2024.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population within the tumor that have recently come into the spotlight. By extracellular matrix (ECM) remodeling and robust cross-talk with cancer cells via different secretions such as cytokines, chemokines, and growth factors, CAFs contribute to cancer progression and poorer prognoses in patients. Novel candidates have been developed to inhibit CAFs; however, due to safety and efficacy issues, none have successfully passed clinical trials. Despite these shortcomings, one concept embraced by many researchers is to repurpose non-oncology drugs with potential anti-cancer properties for cancer treatment. One such example is pirfenidone (PFD), an oral anti-fibrotic medication, primarily administered for idiopathic pulmonary fibrosis. Emerging evidence suggests that PFD has promising anti-cancer effects, mainly manifesting through targeting CAFs. With inhibitory effects on CAFs, PFD restricts cancer proliferation, metastasis, immunosuppression, drug resistance, and tumor stiffness. To improve efficacy and minimize adverse effects, several innovative approaches have been proposed for targeting CAFs via PFD. Interestingly, combination therapy comprising PFD and chemotherapeutics e.g. doxorubicin has shown synergistic anti-cancer effects while protecting normal tissue. Furthermore, novel drug delivery systems, e.g. biomimetic liposomes and multilayer core-shell nanoparticles, have enhanced the pharmacokinetic properties of PFD and further increased its intratumoral delivery. Single-cell RNA sequencing (scRNA-seq) has also been suggested to characterize different subpopulations of CAFs and design precise PFD-based therapeutic strategies. Herein, we discuss the promising anti-cancer effects of PFD via inhibition of CAFs. We then provide findings on novel PFD-based approaches to target CAFs using combination therapy, nanocarrier-based drug delivery, and scRNA-seq.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Tehran University of Medical Sciences, Tehran, Iran; Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Farzin
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
11
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
12
|
Li D, Zhang K, Wang K, Peng R, Liu X, Miao Y, Lan Y, Wang R, Dong L, Luo Y. Sono-blasting Triggered Cascading-Amplification of Oxidative Stress for Enhanced Interventional Therapy of Hepatocellular Carcinoma. NANO LETTERS 2024; 24:8996-9003. [PMID: 38995813 DOI: 10.1021/acs.nanolett.4c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Interventional therapy is widely regarded as a highly promising treatment approach for nonsurgical liver cancer. However, the development of drug resistance and tolerance to hypoxic environments after embolization can lead to increased angiogenesis, enhanced tumor cell stemness, and greater invasiveness, resulting in metastasis and recurrence. To address these challenges, a novel approach involving the use of lecithin and DSPE-PEG comodified Ca2+ loaded (NH4)2S2O8 (LDCNSO) drug in combination with transcatheter arterial embolization (TAE) has been proposed. The sono-blasting effect of LDCNSO under ultrasound triggers a cascading amplification of oxidative stress, by releasing sulfate radical (·SO4-), hydroxyl radical (·OH), and superoxide (·O2-), inducing Ca2+ overload, and reducing glutathione (GSH) levels, which eventually leads to apoptosis. LDCNSO alongside TAE has demonstrated remarkable therapeutic efficacy in the rabbit orthotopic cancer model, resulting in significant inhibition of tumor growth. This research provides valuable insights for the effective treatment of orthotopic tumors.
Collapse
Affiliation(s)
- Dong Li
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kexin Zhang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaiyang Wang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| | - Renmiao Peng
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yamei Miao
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuanpei Lan
- Department of Metallurgical Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Lile Dong
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
13
|
Coelho JQ, Ramos MJ, Ranchor R, Pichel R, Guerra L, Miranda H, Simões J, Azevedo SX, Febra J, Araújo A. What's new about the tumor microenvironment of urothelial carcinoma? Clin Transl Oncol 2024; 26:1549-1560. [PMID: 38332225 DOI: 10.1007/s12094-024-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Urothelial carcinoma is a significant global health concern that accounts for a substantial part of cancer diagnoses and deaths worldwide. The tumor microenvironment is a complex ecosystem composed of stromal cells, soluble factors, and altered extracellular matrix, that mutually interact in a highly immunomodulated environment, with a prominent role in tumor development, progression, and treatment resistance. This article reviews the current state of knowledge of the different cell populations that compose the tumor microenvironment of urothelial carcinoma, its main functions, and distinct interactions with other cellular and non-cellular components, molecular alterations and aberrant signaling pathways already identified. It also focuses on the clinical implications of these findings, and its potential to translate into improved quality of life and overall survival. Determining new targets or defining prognostic signatures for urothelial carcinoma is an ongoing challenge that could be accelerated through a deeper understanding of the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Ridhi Ranchor
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Rita Pichel
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Laura Guerra
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Hugo Miranda
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Joana Simões
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | | | - Joana Febra
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - António Araújo
- Unidade Local de Saúde de Santo António, Porto, Portugal
- Oncology Research Unit, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Ren M, Yao S, Chen T, Luo H, Tao X, Jiang H, Yang X, Zhang H, Yu S, Wang Y, Lu A, Zhang G. Connective Tissue Growth Factor: Regulation, Diseases, and Drug Discovery. Int J Mol Sci 2024; 25:4692. [PMID: 38731911 PMCID: PMC11083620 DOI: 10.3390/ijms25094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.
Collapse
Affiliation(s)
- Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hang Luo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
15
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|