1
|
Zhen W, Zhao T, Chen X, Zhang J. Unlocking the Potential of Disulfidptosis: Nanotechnology-Driven Strategies for Advanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500880. [PMID: 40269657 DOI: 10.1002/smll.202500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Tumor tissues exhibit elevated oxidative stress, with the cystine-glutamate transporter xCT solute carrier family 7 member 11 (xCT/SLC7A11) protecting cancer cells from oxidative damage by facilitating cystine uptake for glutathione synthesis. Disulfidptosis, a newly identified form of programmed cell death (PCD), occurs in cells with high xCT/SLC7A11 expression under glucose-deprived conditions. Distinct from other PCD pathways, disulfidptosis is characterized by aberrant disulfide bond formation and cellular dysfunction, ultimately resulting in cancer cell death. This novel mechanism offers remarkable therapeutic potential by targeting the inherent oxidative stress vulnerabilities of rapidly growing cancer cells. Advances in nanotechnology enable the development of nanomaterials capable of inducing reactive oxygen species (ROS) generation, disrupting disulfide bonds. In addition, they are capable to deliver therapeutic agents directly to tumors, thereby improving therapeutic precision and minimizing off-target effects. Moreover, combining disulfidptosis with ROS-induced immunogenic cell death can remodel the tumor microenvironment and enhance anti-tumor immunity. This review explores the mechanisms underlying disulfidptosis, its therapeutic potential in cancer treatment, and the synergistic role of nanotechnology in amplifying its effects. Selective induction of disulfidptosis using nanomaterials represents a promising strategy for achieving more effective, selective, and less toxic cancer therapies.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| |
Collapse
|
2
|
Qin X, Guo J, Li H, He H, Cai F, Chen X, Chen M, Chen T, Ma L. Selenium Electrophilic Center Responsive to Biological Electron Donors for Efficient Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412062. [PMID: 39950936 PMCID: PMC11984860 DOI: 10.1002/advs.202412062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/24/2024] [Indexed: 04/12/2025]
Abstract
Designing drugs to intelligently respond to different ratio of biological electron donors/receptors in cancer cells and normal cells is a promising strategy to achieve highly effective and less toxic chemotherapy. Herein by employing metal center to active the selenium-containing electrophilic center drug Ru(phtpy-NO2)(phenSe)Cl (RuSe) with strongly polarization characteristics are synthesized which can efficiently shuttle electrons from biological electron donors to convert to oxidative stress. The rate of electron transfer at the selenium electrophilic center is 1.81 times higher in cancer cell environments compared to normal cell environments. This results in the selenium electrophilic center being 14.98 times more lethal to cancer cells than to normal cells. Experimental results demonstrate that the transport of electrons process is carried out via selenium radicals intermediate and the rate of electron transport is positively correlated with the polarization properties of the electrophilic center atoms. The selenium electrophilic center transports bioactive electrons to generate a large number of superoxide anions leading to DNA damage and a decrease in mitochondrial membrane potential which further activates the p53 signaling pathway and amplifies the cancer cell-killing effect after transporting bioactive electrons. This work provides a new avenue for the design of efficient and less toxic chemotherapeutic agents.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Junxian Guo
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Hui Li
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Hanlong He
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Fei Cai
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Xinyan Chen
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Mingkai Chen
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Tianfeng Chen
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Li Ma
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| |
Collapse
|
3
|
Wang DW, Ren XH, Ma YJ, Wang FQ, He XW, Li WY, Zhang YK. Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment. J Colloid Interface Sci 2025; 683:890-905. [PMID: 39755015 DOI: 10.1016/j.jcis.2024.12.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy. The imprinting factors of D-MIP for the recognition of the template molecules, the GLUT1 epitope and the HK2 epitope, were 2.1 and 2.5, respectively, enabling specific recognition of the entire target protein. Targeting GLUT1 with D-MIP could impede its Glu uptake, while simultaneously inhibiting the activity of cytoplasmic HK2, thereby reducing the metabolic rate of Glu. Cell experiments demonstrated that inhibition of HK2 resulted in downregulation of the downstream, products glucose-6-phosphate (6PG) and lactate (LA). In vitro and in vivo experimental results indicated that D-MIP exhibited significant targeting and inhibitory effects on GLUT1 and HK2, respectively, which suppressed tumor glycolysis and induced apoptosis in MCF-7 cells. Furthermore, mouse tumor models and hematoxylin-eosin (H&E) staining confirmed the excellent anti-tumor efficacy and favorable biocompatibility of D-MIP. This work represents the first design and development of a dual-template imprinted polymer targeting key transport channels and metabolic enzymes involved in glycolysis, advancing the research and application of anti-glycolytic tumor therapy.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing-Hui Ren
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao-Jia Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fang-Qi Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Sun M, Zhang X, Feng X, Liang L. PKM2 accelerated the progression of chronic fatigue syndrome via promoting the H4K12la/ NF-κB induced neuroinflammation and mitochondrial damage. Sci Rep 2025; 15:10772. [PMID: 40155479 PMCID: PMC11953386 DOI: 10.1038/s41598-025-93313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
This study aims to explore the effects and potential mechanisms of PKM2-mediated neuroinflammation leading to mitochondrial damage and its role in the progression of chronic fatigue syndrome (CFS). Bioinformatics methods were applied to predict and analyze PKM2 and downstream signaling factors. In vivo experiments were conducted with mice divided into four groups after different treatments: control group, model group, Model + PKM2-OE group, and Model + PKM2-KD group. Morris water maze and field tests were used to assess cognitive function, grip strength, and rotation tests to evaluate physical strength. HE and Nissl staining were used to observe cellular conditions in the CA1 region of the hippocampus. Immunohistochemistry was used to detect PKM2 levels in the CA1 region. Western blot was performed to assess protein expression, lactate assay kits measured serum and brain tissue lactate levels, and ELISA detected inflammatory factors in brain tissue. Bioinformatics analysis showed that PKM2 could promote the expression of glycolytic factors, leading to H4K12la histone lactylation modification, which enhances the expression of inflammatory factors such as NF-κB, resulting in mitochondrial damage. Compared to the control group, the cognitive function of the model group significantly declined, while the cognitive function of the Model + PKM2-OE group improved. However, cognitive function worsened in the Model + PKM2-KD group compared to the model group. The physical strength of the control group was normal, and no significant differences were observed in the model, Model + PKM2-OE, and Model + PKM2-KD groups. Cell quantity and arrangement in the control group were normal, while the model group showed fewer and disorganized cells. The Model + PKM2-OE group showed further deterioration compared to the model group, whereas the Model + PKM2-KD group showed improvement. Compared to the control group, the model group had increased expression of PKM2, H4K12la, H4, IL-1β, and TNFα. Compared to the model group, these markers were even higher in the Model + PKM2-OE group, but significantly reduced in the Model + PKM2-KD group. Serum lactate levels increased in the model group compared to the control group, but there was no significant difference between the Model + PKM2-OE and Model + PKM2-KD groups. Brain tissue lactate levels increased in the model group, further elevated in the Model + PKM2-OE group, but decreased in the Model + PKM2-KD group. PKM2 in hippocampal cells enhances glycolysis, lactate accumulation, and H4K12la/NF-κB-mediated neuroinflammation, leading to mitochondrial damage and accelerating the progression of chronic fatigue syndrome.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional vascular Surgery, Affiliated Hospital of Hebei University, B aoding 071000, Baoding City, Hebei, China
| | - Xinwen Zhang
- Department of Integrative Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China
| | - Xinli Feng
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| | - Lu Liang
- Department of Emergency Medicine, Affiliated Hospital of Hebei University, Baoding 07, Baoding City, 1000, Hebei, China.
- , 212 Yuhua East Road, Baoding City, 071000, Hebei Province, China.
| |
Collapse
|
5
|
Karamifard F, Dadbinpour A, Mazaheri M. An in- vitro measurement for the toxicity of peptides inhibit hexokinase II in breast cancer cell lines. Sci Rep 2025; 15:10660. [PMID: 40148397 PMCID: PMC11950298 DOI: 10.1038/s41598-025-94858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
The role of the enzyme hexokinase 2 in many cancers has been identified through increased glycolysis or binding to the pro-apoptotic channel located in the outer mitochondrial membrane, (VDCA1) and protein kinase (MTOR). To prevent the cancer-causing pathways of this enzyme, it is possible to disrupt the interaction of hexokinase subunits. Peptides can be utilized to interfere with the interaction of subunits by binding to amino acids that contribute to enzyme dimerization. Nowadays, peptides have become a suitable option for the treatment of various diseases, especially cancer, due to their small size, ease of synthesis, and ability to penetrate the tumor. This study examined the toxic effect of peptides that inhibit enzyme interaction on tumorigenic MCF-7 and MDA-MB-231 and non-tumorigenic MCF10A cell lines through MTT analysis and flow cytometry to determine cell apoptosis. The MCF-7 line experienced a significant decrease in cell proliferation with both peptides. The RYALFSS peptide caused a decrease in the number of MDA-MB-231 cells, but the EKGLGATTHPTAAVKML peptide caused a significant increase. There was no significant increase or decrease in the MCF10A cell line. The study's finding indicate that peptides can serve as a tool to prevent the proliferation of carcinogenic cells.
Collapse
Affiliation(s)
- Faranak Karamifard
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dadbinpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Genetic and Environmental Adventures Research Center, School of Abarkouh Paramedicin, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Mother and Newborn, Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Ma J, Tang L, Xiao J, Tang K, Zhang H, Huang B. Burning lactic acid: a road to revitalizing antitumor immunity. Front Med 2025:10.1007/s11684-025-1126-6. [PMID: 40119026 DOI: 10.1007/s11684-025-1126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 03/24/2025]
Abstract
Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Liang Tang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jingxuan Xiao
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Yang J, Su T, Wang Q, Shi R, Ding J, Chen X. Glucose Metabolism-Targeted Poly(amino acid) Nanoformulation of Oxaliplatin(IV)-Aspirin Prodrug for Enhanced Chemo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419033. [PMID: 39950419 DOI: 10.1002/adma.202419033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Indexed: 03/27/2025]
Abstract
Inappropriate glucose metabolism in cancer cells is associated with immunosuppressive tumor microenvironments (TMEs). Although glycolysis inhibition enhances T cell-mediated immune responses, the integrated platforms combining glycolysis inhibition with immunotherapy remain underdeveloped. To address this gap, a glucose metabolism-targeted poly(amino acid) nanoformulation of oxaliplatin(IV)-aspirin prodrug (NP/OXA-ASP2) is developed to improve chemo-immunotherapy by suppressing tumor glycolysis. This poly(amino acid) nanoparticle exhibits selective release, discharging 90.0% of OXA-ASP2 under reductive conditions within 36 h. Furthermore, over 80% of the prodrug converts to OXA and ASP within 12 h, promoting mitochondrial damage and glycolysis inhibition, which amplifies immunogenic cell death induced by OXA. In addition, suppressing glycolytic flux reduces lactate leakage, mitigating the immunosuppressive TMEs. Together, these mechanisms contribute to stronger chemo-immunotherapy efficacy. Compared to the OXA plus ASP formulation, NP/OXA-ASP2 demonstrates superior performances, reducing lactate levels at the tumor site by 25.4%, increasing the proportion of cytotoxic T lymphocytes by 1.53 times, decreasing the proportion of regulatory T cells by 2.20 times, and improving 1.39-fold of the tumor inhibition rate. These findings underscore that NP/OXA-ASP2 is a promising platform for integrating tumor metabolic regulation with immunomodulation and holds significant potential for advancing clinical chemo-immunotherapy.
Collapse
Affiliation(s)
- Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Tianqi Su
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, P. R. China
| | - Qinqi Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Zhang X, Bai J, Sun S, Li Y, Li X, Meng G, Cheng W, Yin Y, Wang Z, Wang B. Chiral nanoassembly remodels tumor microenvironment through non-oxygen-dependent depletion lactate for effective photodynamic immunotherapy. Biomaterials 2025; 319:123203. [PMID: 40009900 DOI: 10.1016/j.biomaterials.2025.123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Targeting lactate metabolism in tumor microenvironment (TME) has emerged as a promising strategy for enhancing immunotherapy. However, the commonly used strategy of lactate oxidation by lactate oxidase consumes oxygen, exacerbating tumor hypoxia and hindering immunotherapy. Here, we present a novel tumor-targeting, near infrared light-activated and TME-responsive chiral nanoassembly (Zn-UCMB) for enhancing photodynamic triggered immunogenic cell death (ICD) through a nonoxygen-dependent depletion of lactate. In the moderately acidic TME, the chiral Zn complex liberated from the Zn-UCMB selectively coordinates with l-lactate, leading to the depletion of lactate. Additionally, the Zn-UCMB facilitates the decomposition of H2O2 into O2, which significantly enhances the efficacy of photodynamic therapy (PDT) and triggers a robust ICD effect. Moreover, the nonoxygen-dependent depletion of lactate can reprogram the TME by reducing the expression of HIF-1α, decreasing VEGF expression, and mitigating immunosuppressive conditions. This prompts the phenotypic transformation of tumor-associated macrophages from M2 to M1. Consequently, Zn-UCMB not only enhances the efficacy of PDT but also elicits a potent ICD during 980 nm laser irradiation, thereby effectively suppressing tumor growth and metastasis. The findings offer a novel approach to overcome the limitations of existing lactate metabolism-targeting strategies and provide a promising therapeutic option for enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Jinwei Bai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Yu Li
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xinxin Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Yuhui Yin
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Zhiyi Wang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Cheng Q, Chen Y, Zou D, Li Q, Shi X, Qin Q, Liu M, Wang L, Wang Z. Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409329. [PMID: 39739629 PMCID: PMC11831457 DOI: 10.1002/advs.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments. We discover that transition metal vanadium (V) effectively inhibits glucose metabolism in CRC and synergizes with glutaminase inhibitors (BPTES) to disrupt CRC's energy dependency. Thus, a dual energy metabolism suppression nanosystem (VSi-BP@HA) is engineered by loading BPTES into V-doped hollow mesoporous silica nanoparticles. This nanosystem effectively dampens CRC energy metabolism, eradicating 33% of tumors in mice. Strikingly, the cell biological and preclinical model datasets provide compelling evidence showing that VSi-BP@HA not only reverses CRC cells chemo-resistance but also drastically potentiates anti-PD1 immunotherapy. Therefore, this nanosystem provides not only a promising approach to suppress CRC, but also a potential adjunct tool for enhancing chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Qian Cheng
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Yuzhe Chen
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Danyi Zou
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Qushuhua Qin
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
10
|
Rahman MA, Yadab MK, Ali MM. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells 2024; 13:1924. [PMID: 39594672 PMCID: PMC11592846 DOI: 10.3390/cells13221924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying definitive biomarkers that predict clinical response and resistance to immunotherapy remains a critical challenge. One emerging factor is extracellular acidosis in the tumor microenvironment (TME), which significantly impairs immune cell function and contributes to immunotherapy failure. However, acidic conditions in the TME disrupt the interaction between cancer and immune cells, driving tumor-infiltrating T cells and NK cells into an inactivated, anergic state. Simultaneously, acidosis promotes the recruitment and activation of immunosuppressive cells, such as myeloid-derived suppressor cells and regulatory T cells (Tregs). Notably, tumor acidity enhances exosome release from Tregs, further amplifying immunosuppression. Tumor acidity thus acts as a "protective shield," neutralizing anti-tumor immune responses and transforming immune cells into pro-tumor allies. Therefore, targeting lactate metabolism has emerged as a promising strategy to overcome this barrier, with approaches including buffer agents to neutralize acidic pH and inhibitors to block lactate production or transport, thereby restoring immune cell efficacy in the TME. Recent discoveries have identified genes involved in extracellular pH (pHe) regulation, presenting new therapeutic targets. Moreover, ongoing research aims to elucidate the molecular mechanisms driving extracellular acidification and to develop treatments that modulate pH levels to enhance immunotherapy outcomes. Additionally, future clinical studies are crucial to validate the safety and efficacy of pHe-targeted therapies in cancer patients. Thus, this review explores the regulation of pHe in the TME and its potential role in improving cancer immunotherapy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | | | - Meser M. Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| |
Collapse
|
11
|
Hou G, Chen Y, Lei H, Lu Y, Liu L, Han Z, Sun S, Li J, Cheng L. Bimetallic peroxide nanoparticles induce PANoptosis by disrupting ion homeostasis for enhanced immunotherapy. SCIENCE ADVANCES 2024; 10:eadp7160. [PMID: 39514658 PMCID: PMC11546811 DOI: 10.1126/sciadv.adp7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
PANoptosis has recently emerged as a potential approach to improve the immune microenvironment. However, current methods for inducing PANoptosis are limited. Herein, through biological screening, the rational use of the nutrient metal ions Cu2+ and Zn2+ had great potential to induce PANoptosis. Inspired by these findings, we successfully developed hydrazided hyaluronic acid-modified zinc copper oxide (HZCO) nanoparticles as a PANoptosis inducer to potentiate immunotherapy. Bioactive HZCO actively delivered Cu2+ and Zn2+ while disrupting the cellular intrinsic ion metabolism pathway, resulting in double-stranded DNA release and organelle damage in cancer cells. Simultaneously, this process triggered the formation of PANoptosome and the activation of PANoptosis. HZCO-induced PANoptosis inhibited tumor growth and activated potent antitumor immune response, thereby enhancing the effectiveness of anti-programmed cell death 1 therapy. Overall, our work provides an insight into the development of PANoptosis inducers and the design of synergistic immunotherapy strategies.
Collapse
Affiliation(s)
- Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Du R, Gao Y, Yan C, Ren X, Qi S, Liu G, Guo X, Song X, Wang H, Rao J, Zang Y, Zheng M, Li J, Huang H. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience 2024; 27:110911. [PMID: 39351192 PMCID: PMC11440250 DOI: 10.1016/j.isci.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Lysine lactylation (Kla), an epigenetic mark triggered by lactate during glycolysis, including the Warburg effect, bridges metabolism and gene regulation. Enzymes such as p300 and HDAC1/3 have been pivotal in deciphering the regulatory dynamics of Kla, though questions about additional regulatory enzymes, their specific Kla substrates, and the underlying functional mechanisms persist. Here, we identify SIRT1 and SIRT3 as key "erasers" of Kla, shedding light on their selective regulation of both histone and non-histone proteins. Proteomic analysis in SIRT1/SIRT3 knockout HepG2 cells reveals distinct substrate specificities toward Kla, highlighting their unique roles in cellular signaling. Notably, we highlight the role of specific Kla modifications, such as those on the M2 splice isoform of pyruvate kinase (PKM2), in modulating metabolic pathways and cell proliferation, thereby expanding Kla's recognized functions beyond epigenetics. Therefore, this study deepens our understanding of Kla's functional mechanisms and broadens its biological significance.
Collapse
Affiliation(s)
- Runhua Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanmei Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cong Yan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shankang Qi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohan Song
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanmin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingxin Rao
- State Key Laboratory of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Zang
- Lingang Laboratory, Shanghai 201203, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
14
|
Luo G, Wang S, Lu W, Ju W, Li J, Tan X, Zhao H, Han W, Yang X. Application of metabolomics in oral squamous cell carcinoma. Oral Dis 2024; 30:3719-3731. [PMID: 38376209 DOI: 10.1111/odi.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a prevalent malignancy affecting the head and neck region. The prognosis for OSCC patients remains unfavorable due to the absence of precise and efficient early diagnostic techniques. Metabolomics offers a promising approach for identifying distinct metabolites, thereby facilitating early detection and treatment of OSCC. OBJECTIVE This review aims to provide a comprehensive overview of recent advancements in metabolic marker identification for early OSCC diagnosis. Additionally, the clinical significance and potential applications of metabolic markers for the management of OSCC are discussed. RESULTS This review summarizes metabolic changes during the occurrence and development of oral squamous cell carcinoma and reviews prospects for the clinical application of characteristic, differential metabolites in saliva, serum, and OSCC tissue. In this review, the application of metabolomic technology in OSCC research was summarized, and future research directions were proposed. CONCLUSION Metabolomics, detection technology that is the closest to phenotype, can efficiently identify differential metabolites. Combined with statistical data analyses and artificial intelligence technology, it can rapidly screen characteristic biomarkers for early diagnosis, treatment, and prognosis evaluations.
Collapse
Affiliation(s)
- Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuai Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Ju
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianhong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Tan
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Wang J, Liu Y, Cui T, Yang H, Lin L. Current progress in the regulation of endogenous molecules for enhanced chemodynamic therapy. Chem Sci 2024; 15:9915-9926. [PMID: 38966366 PMCID: PMC11220580 DOI: 10.1039/d4sc02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Chemodynamic therapy (CDT) is a potential cancer treatment strategy, which relies on Fenton chemistry to transform hydrogen peroxide (H2O2) into highly cytotoxic reactive oxygen species (ROS) for tumor growth suppression. Although overproduced H2O2 in cancerous tissues makes CDT a feasible and specific tumor therapeutic modality, the treatment outcomes of traditional chemodynamic agents still fall short of expectations. Reprogramming cellular metabolism is one of the hallmarks of tumors, which not only supports unrestricted proliferative demands in cancer cells, but also mediates the resistance of tumor cells against many antitumor modalities. Recent discoveries have revealed that various cellular metabolites including H2O2, iron, lactate, glutathione, and lipids have distinct effects on CDT efficiency. In this perspective, we intend to provide a comprehensive summary of how different endogenous molecules impact Fenton chemistry for a deep understanding of mechanisms underlying endogenous regulation-enhanced CDT. Moreover, we point out the current challenges and offer our outlook on the future research directions in this field. We anticipate that exploring CDT through manipulating metabolism will yield significant advancements in tumor treatment.
Collapse
Affiliation(s)
- Jun Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yina Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Tingting Cui
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore Singapore 117597 Singapore
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
16
|
Zhou Z, Li C, Li C, Zhou L, Tan S, Hou W, Xie C, Wang L, Shen J, Xiong W. Mitochondria-Targeted Nanoadjuvants Induced Multi-Functional Immune-Microenvironment Remodeling to Sensitize Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400297. [PMID: 38704675 PMCID: PMC11234464 DOI: 10.1002/advs.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Indexed: 05/06/2024]
Abstract
It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-β (TGF-β) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-β co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-β co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.
Collapse
Affiliation(s)
- Zaigang Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Cheng Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Chao Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lei Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Shuo Tan
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Weibin Hou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyZhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhou key Laboratory of Basic Science and Translational Research of Radiation OncologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Long Wang
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Wei Xiong
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
17
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|