1
|
Tomita-Sudo E, Akita T, Sakimoto N, Tahara-Takamine S, Kawakami J. Sequence-Specific Free Energy Changes in DNA/RNA Induced by a Single LNA-T Modification in Antisense Oligonucleotides. Int J Mol Sci 2024; 25:13240. [PMID: 39769004 PMCID: PMC11676002 DOI: 10.3390/ijms252413240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
2',4'-methylene bridged nucleic acid/locked nucleic acid (2',4'-BNA/LNA; LNA) is a modified nucleic acid that improves the function of antisense oligonucleotide therapeutics. In particular, LNA in the DNA strand increases its binding affinity for the target RNA. Predicting the binding affinities of LNA-containing antisense oligonucleotides and RNA duplexes is useful for designing antisense oligonucleotides. The nearest neighbor parameters may be useful for binding affinity prediction, similar to those for natural nucleic acids. However, the sequence dependence of the thermodynamic stability of DNA/RNA duplexes containing LNA remains unexplored. Therefore, in this study, we evaluated the thermodynamic stabilities of DNA/RNA duplexes containing a single LNA modification in the DNA strand. We found that LNA-stabilized DNA/RNA duplexes averaged -1.5 kcal mol-1. Our findings suggest that the thermodynamic stabilization effect of LNA is sequence-specific.
Collapse
Affiliation(s)
- Elisa Tomita-Sudo
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Tomoka Akita
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Nae Sakimoto
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Saori Tahara-Takamine
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Junji Kawakami
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Tomilova YE, Russkikh NE, Yi IM, Shaburova EV, Tomilov VN, Pyrinova GB, Brezhneva SO, Tikhonyuk OS, Gololobova NS, Popichenko DV, Arkhipov MO, Bryzgalov LO, Brenner EV, Artyukh AA, Shtokalo DN, Antonets DV, Ivanov MK. Enhancing the reverse transcriptase function in Taq polymerase via AI-driven multiparametric rational design. Front Bioeng Biotechnol 2024; 12:1495267. [PMID: 39720166 PMCID: PMC11666352 DOI: 10.3389/fbioe.2024.1495267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties. Methods The experimental procedure was conducted in several stages: 1) On the basis of a foundational paper, we selected 18 candidate mutations known to affect RTase activity across six sites. These candidates, along with the wild type, were assessed in the wet lab for multiple properties to establish an initial training dataset. 2) Using embeddings of Taq polymerase variants generated by a protein language model, we trained a Ridge regression model to predict multiple enzyme properties. This model guided the selection of 14 new candidates for experimental validation, expanding the dataset for further refinement. 3) To better manage risk by assessing confidence intervals on predictions, we transitioned to Gaussian process regression and trained this model on an expanded dataset comprising 33 data points. 4) With this enhanced model, we conducted an in silico screen of over 18 million potential mutations, narrowing the field to 16 top candidates for comprehensive wet-lab evaluation. Results and Discussion This iterative, data-driven strategy ultimately led to the identification of 18 enzyme variants that exhibited markedly improved RTase activity while maintaining a favorable balance of other key properties. These enhancements were generally accompanied by lower Kd, moderately reduced fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a strong interdependence among these traits. Several enzymes validated via this procedure were effective in single-enzyme real-time reverse-transcription PCR setups, implying their utility for the development of new tools for real-time reverse-transcription PCR technologies, such as pathogen RNA detection and gene expression analysis. This study illustrates how AI can be effectively integrated with experimental bioengineering to enhance enzyme functionality systematically. Our approach offers a robust framework for designing enzyme mutants tailored to specific biotechnological applications. The results of our biological activity predictions for mutated Taq polymerases can be accessed at https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms.
Collapse
Affiliation(s)
| | | | | | - Elizaveta V. Shaburova
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | - Dmitry N. Shtokalo
- AcademGene LLC, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Informatics Systems SB RAS, Novosibirsk, Russia
| | - Denis V. Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail K. Ivanov
- AO Vector-Best, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| |
Collapse
|
3
|
Ferreira I, Slott S, Astakhova K, Weber G. Complete Mesoscopic Parameterization of Single LNA Modifications in DNA Applied to Oncogene Probe Design. J Chem Inf Model 2021; 61:3615-3624. [PMID: 34251211 DOI: 10.1021/acs.jcim.1c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of mesoscopic models to describe the thermodynamic properties of locked nucleic acid (LNA)-modified nucleotides can provide useful insights into their properties, such as hydrogen-bonding and stacking interactions. In addition, the mesoscopic parameters can be used to optimize LNA insertion in probes, to achieve accurate melting temperature predictions, and to obtain duplex opening profiles at the base-pair level. Here, we applied this type of model to parameterize a large set of melting temperatures for LNA-modified sequences, from published sources, covering all possible nearest-neighbor configurations. We have found a very large increase in Morse potentials, which indicates very strong hydrogen bonding as the main cause of improved LNA thermodynamic stability. LNA-modified adenine-thymine (AT) was found to have similar hydrogen bonding to unmodified cytosine-guanine (CG) base pairs, while for LNA CG, we found exceptionally large hydrogen bonding. In contrast, stacking interactions, which were thought to be behind the stability of LNA, were similar to unmodified DNA in most cases. We applied the new LNA parameters to the design of BRAF, KRAS, and EGFR oncogene variants by testing all possible LNA modifications. Selected sequences were then synthesized and had their hybridization temperatures measured, achieving a prediction accuracy within 1 °C. We performed a detailed base-pair opening analysis to discuss specific aspects of these probe hybridizations that may be relevant for probe design.
Collapse
Affiliation(s)
- Izabela Ferreira
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.,Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Hari Y, Osawa T, Onishi Y, Ito Y. Synthesis and Hybridizing Property of Oligonucleotides Including 2′-C,4′-C-Ethyleneoxy-Bridged 2′-Deoxyadenosine with an Exocyclic Methylene Unit. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Kumar M, Kumar R, Rana N, Prasad AK. Synthesis of 3′-azido/-amino-xylobicyclonucleosides. RSC Adv 2016. [DOI: 10.1039/c5ra25222a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipozyme® TL IM mediated the selective deacetylation of one of the two acetoxy groups in 4-C-acetoxymethyl-5-O-acetyl-3-azido-3-deoxy-1,2-O-isopropylidene-α-d-xylofuranose, leading to the first efficient syntheses of 3′-azido/3′-amino-xylobicyclonucleosides T, U, C and A.
Collapse
Affiliation(s)
- Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Rajesh Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Neha Rana
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| |
Collapse
|
6
|
Fakhfakh K, Hughesman CB, Louise Creagh A, Kao V, Haynes C. Calorimetric and Spectroscopic Analysis of the Thermal Stability of Short Duplex DNA-Containing Sugar and Base-Modified Nucleotides. Methods Enzymol 2015; 567:97-127. [PMID: 26794352 DOI: 10.1016/bs.mie.2015.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Base- and sugar-modified analogs of DNA and RNA are finding ever expanding use in medicine and biotechnology as tools to better tailor structured oligonucleotides by altering their thermal stability, nuclease resistance, base-pairing specificity, antisense activity, or cellular uptake. Proper deployment of these chemical modifications generally requires knowledge of how each affects base-pairing properties and thermal stabilities. Here, we describe in detail how differential scanning calorimetry and UV spectroscopy may be used to quantify the melting thermodynamics of short dsDNA containing chemically modified nucleosides in one or both strands. Insights are provided into why and how the presence of highly stable base pairs containing modified nucleosides can alter the nature of calorimetry or melting spectroscopy data, and how each experiment must therefore be conducted to ensure high-quality melting thermodynamics data are obtained. Strengths and weaknesses of the two methods when applied to chemically modified duplexes are also addressed.
Collapse
Affiliation(s)
- Kareem Fakhfakh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis B Hughesman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Louise Creagh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Kao
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles Haynes
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada; RES'EAU Water Research Network, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|