1
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
2
|
Mou M, Patel A, Mallick S, Jayanthi K, Sun XG, Paranthaman MP, Kothe S, Baral E, Saleh S, Mugumya JH, Rasche ML, Gupta RB, Lopez H, Jiang M. Slug Flow Coprecipitation Synthesis of Uniformly-Sized Oxalate Precursor Microparticles for Improved Reproducibility and Tap Density of Li(Ni 0.8Co 0.1Mn 0.1)O 2 Cathode Materials. ACS APPLIED ENERGY MATERIALS 2023; 6:3213-3224. [PMID: 37013178 PMCID: PMC10064804 DOI: 10.1021/acsaem.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The microparticle quality and reproducibility of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode materials are important for Li-ion battery performance but can be challenging to control directly from synthesis. Here, a scalable reproducible synthesis process is designed based on slug flow to rapidly generate uniform micron-size spherical-shape NCM oxalate precursor microparticles at 25-34 °C. The whole process takes only 10 min, from solution mixing to precursor microparticle generation, without needing aging that typically takes hours. These oxalate precursors are convertible to spherical-shape NCM811 oxide microparticles, through a preliminary design of low heating rates (e.g., 0.1 and 0.8 °C/min) for calcination and lithiation. The outcome oxide cathode particles also demonstrate improved tap density (e.g., 2.4 g mL-1 for NCM811) and good specific capacity (202 mAh g-1 at 0.1 C) in coin cells and reasonably good cycling performance with LiF coating.
Collapse
Affiliation(s)
- Mingyao Mou
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Arjun Patel
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Sourav Mallick
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - K. Jayanthi
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao-Guang Sun
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Sophie Kothe
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ena Baral
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Selma Saleh
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jethrine H. Mugumya
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Michael L. Rasche
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ram B. Gupta
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Herman Lopez
- Ionblox
Inc., Fremont, California 94538, United States
| | - Mo Jiang
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
3
|
Biocatalysis as a Green Approach for Synthesis of Iron Nanoparticles—Batch and Microflow Process Comparison. Catalysts 2023. [DOI: 10.3390/catal13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is a growing need for production of iron particles due to their possible use in numerous systems (e.g., electrical, magnetic, catalytic, biological and others). Although severe reaction conditions and heavy solvents are frequently used in production of nanoparticles, green synthesis has arisen as an eco-friendly method that uses biological catalysts. Various precursors are combined with biological material (such as enzymes, herbal extracts, biomass, bacteria or yeasts) that contain chemicals from the main or secondary metabolism that can function as catalysts for production of nanoparticles. In this work, batch (“one-pot”) biosynthesis of iron nanoparticles is reviewed, as well as the possibilities of using microfluidic systems for continuous biosynthesis of iron nanoparticles, which could overcome the limitations of batch synthesis.
Collapse
|
4
|
Gas–liquid–liquid slug flow and mass transfer in hydrophilic and hydrophobic microreactors. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Liu Y, Yao C, Yang L, Yang M, Chen G. A colorimetric technique to characterize mass transfer during liquid-liquid slug flow in circular capillaries. MethodsX 2021; 8:101346. [PMID: 34434845 PMCID: PMC8374329 DOI: 10.1016/j.mex.2021.101346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/05/2021] [Indexed: 11/27/2022] Open
Abstract
Continuous slug flow in microreactors are featured by alternative presence of regulate segments of immiscible phases in microchannel or capillaries with lateral dimensions below 1 mm. Due to the high interfacial area and short diffusive distance therein, such microreactors have been widely applied in chemical engineering processes that are sensitive to mass transfer. Therefore, mass transfer rates in microreactors have long been broadly investigated via either typical offline or online methods. Compared to these conventional methods, the colorimetric technique based on the oxidation of resazurin with oxygen enables direct determination of physical mass transfer rates. However, this technique was currently applied only to the gas-liquid system in microreactors, and mostly in rectangular channels due to the simplicity in image processing. Based on this, the current paper showed a demo where the colorimetric technique using resazurin was adapted to a liquid-liquid system for the mass transfer study of flowing droplets within a slug flow capillary. Experimental tips and tricks were summarized, and a sliced color-concentration calibration strategy was proposed to balance analyzing efficiency and accuracy.
Collapse
Affiliation(s)
- Yanyan Liu
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China.,University of Chinese Academy of Sciences, China
| | - Chaoqun Yao
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Lixia Yang
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Mei Yang
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Guangwen Chen
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| |
Collapse
|
6
|
Guo M, Chen Q, Liang Y, Wang Y, Luo G, Yu H. Experimental and model‐based study of biohydration of acrylonitrile to acrylamide in a microstructured chemical system. AIChE J 2020. [DOI: 10.1002/aic.16298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mingzhao Guo
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Qiang Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Youxiang Liang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yujun Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Guangsheng Luo
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Huimin Yu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Pang Y, Zhou Q, Wang X, Lei Y, Ren Y, Li M, Wang J, Liu Z. Droplets generation under different flow rates in T‐junction microchannel with a neck. AIChE J 2020. [DOI: 10.1002/aic.16290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
- Beijing Key Laboratory of Advanced Manufacturing Technology Beijing University of Technology Beijing China
| | - Qiang Zhou
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
| | - Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
| | - Yanghao Lei
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
| | - Yanlin Ren
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
| | - Ju Wang
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology Beijing China
- Beijing Key Laboratory of Advanced Manufacturing Technology Beijing University of Technology Beijing China
| |
Collapse
|
8
|
Hao Y, Jin N, Wang Q, Zhou Y, Zhao Y, Zhang X, Lü H. Dynamics and controllability of droplet fusion under gas-liquid-liquid three-phase flow in a microfluidic reactor. RSC Adv 2020; 10:14322-14330. [PMID: 35498473 PMCID: PMC9051941 DOI: 10.1039/d0ra00913j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022] Open
Abstract
Gas–liquid–liquid three-phase flow systems have unique advantages of controlling reagent manipulation and improving reaction performance. However, there remains a lack of insight into the dynamics and controllability of water droplet fusion assisted by gas bubbles, particularly scaling laws for use in the design and operation of complex multiphase flow processes. In the present work, a microfluidic reactor with three T-junctions was employed to sequentially generate gas bubbles and then fuse two dispersed water droplets. The formation of the dispersed phase was divided into multiple stages, and the bubble/droplet size was correlated with operating parameters. The formation of the second dispersed droplet at the third T-junction was accompanied by the fusion of the two dispersed water droplets that were formed. It revealed a two-stage process (i.e. drainage and fusion) for the two droplets to fuse while becoming mature by breaking-up with the secondary water supply stream. In addition, a droplet contact model was employed to understand the influence on the process stability and uniformity of the merged/fused droplets by varying the surfactant concentration (in oil), the viscosity of the water phase, and the flow rates of different fluids. The study provides a deeper understanding of the droplet fusion characteristics on gas–liquid–liquid three-phase flow in microreactors for a wide range of applications. Gas–liquid–liquid three-phase flow systems have unique advantages of controlling reagent manipulation and improving reaction performance.![]()
Collapse
Affiliation(s)
- Yanyan Hao
- College of Chemistry & Chemical Engineering, Yantai University Yantai 264005 China
| | - Nan Jin
- College of Chemistry & Chemical Engineering, Yantai University Yantai 264005 China
| | - Qingqiang Wang
- College of Chemistry & Chemical Engineering, Yantai University Yantai 264005 China
| | - Yufei Zhou
- College of Chemistry & Chemical Engineering, Yantai University Yantai 264005 China
| | - Yuchao Zhao
- College of Chemistry & Chemical Engineering, Yantai University Yantai 264005 China
| | - Xunli Zhang
- School of Engineering & Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Hongying Lü
- College of Chemistry & Chemical Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
9
|
Yao C, Zhao Y, Zheng J, Zhang Q, Chen G. The effect of liquid viscosity and modeling of mass transfer in gas–liquid slug flow in a rectangular microchannel. AIChE J 2020. [DOI: 10.1002/aic.16934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chaoqun Yao
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
- University of Chinese Academy of Sciences Beijing China
| | - Yuchao Zhao
- Shandong Collaborative Innovation Center of Light Hydrocarbon Transformation and UtilizationCollege of Chemistry & Chem Eng, Yantai University Yantai China
| | - Jia Zheng
- School of ScienceDalian Maritime University Dalian China
| | - Qi Zhang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
- University of Chinese Academy of Sciences Beijing China
| | - Guangwen Chen
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| |
Collapse
|
10
|
Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00062-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractGas-liquid-liquid flow in microreactors holds great potential towards process intensification of operation in multiphase systems, particularly by a precise control over the three-phase contact patterns and the associated mass transfer enhancement. This work reviews the manipulation of gas-liquid-liquid three-phase flow in microreactors for carrying out efficient reaction processes, including gas-liquid-liquid reactions with catalysts residing in either liquid phase, coupling of a gas-liquid reaction with the liquid-liquid extraction, inert gas assisted liquid-liquid reactions and particle synthesis under three-phase flow. Microreactors are shown to be able to provide well-defined flow patterns and enhanced gas-liquid/liquid-liquid mass transfer rates towards the optimized system performance. The interplay between hydrodynamics and mass transfer, as well as its influence on the overall microreactor system performance is discussed. Meanwhile, future perspectives regarding the scale-up of gas-liquid-liquid microreactors in order to meet the industrial needs and their potential applications especially in biobased chemicals and fuels synthesis are further addressed.
Collapse
|
11
|
Sun J, Liu Z, Cao D. A permeation model of shale gas in cylindrical-like kerogen pores at geological conditions. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Effects of a Dynamic Injection Flow Rate on Slug Generation in a Cross-Junction Square Microchannel. Processes (Basel) 2019. [DOI: 10.3390/pr7100765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The injection flow rates of two liquid phases play a decisive role in the slug generation of the liquid-liquid slug flow. However, most injection flow rates so far have been constant. In order to investigate the effects of dynamic injection flow rates on the slug generation, including the slug size, separation distance and slug generation cycle time, a transient numerical model of a cross-junction square microchannel is established. The Volume of Fluid method is adopted to simulate the interface between two phases, i.e., butanol and water. The model is validated by experiments at a constant injection flow rate. Three different types of dynamic injection flow rates are applied for butanol, which are triangle, rectangular and sine wave flow rates. The dynamic injection flow rate cycles, which are related to the constant slug generation cycle time t0, are investigated. Results show that when the cycle of the disperse phase flow rate is larger than t0, the slug generation changes periodically, and the period is influenced by the cycle of the disperse phase flow rate. Among the three kinds of dynamic disperse flow rate, the rectangular wave influences the slug size most significantly, while the triangle wave influences the separation distance and the slug generation time more prominently.
Collapse
|
13
|
Liu Y, Yue J, Xu C, Zhao S, Yao C, Chen G. Hydrodynamics and local mass transfer characterization under gas–liquid–liquid slug flow in a rectangular microchannel. AIChE J 2019. [DOI: 10.1002/aic.16805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanyan Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- Department of Chemical Engineering, Engineering and Technology Institute Groningen University of Groningen Groningen The Netherlands
- University of Chinese Academy of Sciences Beijing China
| | - Jun Yue
- Department of Chemical Engineering, Engineering and Technology Institute Groningen University of Groningen Groningen The Netherlands
| | - Chao Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Shuainan Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Chaoqun Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
14
|
|
15
|
Zhang H, Wang H, Xu H, Zhang L, Xuan J. Enabling separation intensification of a lanthanide pair with closely similar kinetics based on droplet microfluidics: hydrodynamic and kinetic approaches. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00151d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Separation intensification of a lanthanide pair obtained through hydrodynamic and kinetic approaches in microfluidics.
Collapse
Affiliation(s)
- Hao Zhang
- School of Mechanical and Electrical Engineering
- Jiangxi University of Science and Technology
- Ganzhou
- China
- Department of Chemical Engineering
| | - Huizhi Wang
- Department of Mechanical Engineering
- Imperial College London
- London
- UK
| | - Hong Xu
- State Key Laboratory of Chemical Engineering
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Li Zhang
- State Key Laboratory of Chemical Engineering
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jin Xuan
- Department of Chemical Engineering
- Loughborough University
- Loughborough
- UK
| |
Collapse
|
16
|
Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Liu Y, Yue J, Zhao S, Yao C, Chen G. Bubble splitting under gas-liquid-liquid three-phase flow in a double T-junction microchannel. AIChE J 2017. [DOI: 10.1002/aic.15920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yanyan Liu
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
- University of Chinese Academy of Sciences; Beijing China
| | - Jun Yue
- Dept. of Chemical Engineering, Engineering and Technology Institute Groningen; University of Groningen; 9747 AG Groningen The Netherlands
| | - Shuainan Zhao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| | - Chaoqun Yao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| |
Collapse
|
18
|
Yao C, Liu Y, Xu C, Zhao S, Chen G. Formation of liquid-liquid slug flow in a microfluidic T-junction: Effects of fluid properties and leakage flow. AIChE J 2017. [DOI: 10.1002/aic.15889] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chaoqun Yao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Yanyan Liu
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Univ. of Chinese Academy of Sciences; Beijing 100049 China
| | - Chao Xu
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Univ. of Chinese Academy of Sciences; Beijing 100049 China
| | - Shuainan Zhao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Univ. of Chinese Academy of Sciences; Beijing 100049 China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing 211816 China
| |
Collapse
|