1
|
Ashman TL. Uncovering the reciprocal effects of plant polyploidy and the microbiome: implications for understanding of polyploid success. THE NEW PHYTOLOGIST 2025. [PMID: 40432236 DOI: 10.1111/nph.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Polyploidy plays a major role in diversification and speciation of almost all plants. Separately, the microbiome is recognized for its ubiquitous role in plant functioning. Despite the importance of both processes, we lack a synthetic picture of their reciprocal relationship. I forge this missing linkage by presenting the ways in which plant polyploidy can shape the microbiome and how the microbiome in turn can affect polyploid phenotype and fitness. I illustrate these interactions by drawing on the small, but compelling, set of comparisons of the plant-microbial community interaction with taxa representing different stages of the polyploid continuum and thereby shed light on how the advantages of polyploidy may be influenced by microbes. I use findings from a range of studies to build the case for plant-microbiome reciprocal interactions in both key pathways for polyploid persistence: overcoming their minority cytotype disadvantage and increasing competitive ability and/or niche shifts relative to diploids. I put forward how the microbiome likely plays a role in polyploid stress tolerance, abiotic niche breadth, range limits and coexistence. I conclude by identifying the research needed to test these hypotheses and how doing so could transform our understanding of polyploidy as a driver of plant ecology and evolution.
Collapse
Affiliation(s)
- Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
2
|
Gerstner BP, Laport RG, Rudgers JA, Whitney KD. Plant-soil microbe feedbacks depend on distance and ploidy in a mixed cytotype population of Larrea tridentata. AMERICAN JOURNAL OF BOTANY 2024; 111:e16298. [PMID: 38433501 DOI: 10.1002/ajb2.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024]
Abstract
PREMISE Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.
Collapse
Affiliation(s)
- Benjamin P Gerstner
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert G Laport
- Department of Biology, The College of Idaho, Caldwell, ID, 83605, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Han M, Qie Q, Liu M, Meng H, Wu T, Yang Y, Niu L, Sun G, Wang Y. Clonal growth characteristics and diversity patterns of different Clintonia udensis (Liliaceae) diploid and tetraploid cytotypes in the Hualongshan Mountains. Sci Rep 2024; 14:15509. [PMID: 38969683 PMCID: PMC11226640 DOI: 10.1038/s41598-024-66067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Polyploidization plays an important role in plant evolution and biodiversity. However, intraspecific polyploidy compared to interspecific polyploidy received less attention. Clintonia udensis (Liliaceae) possess diploid (2n = 2x = 14) and autotetraploid (2n = 4x = 28) cytotypes. In the Hualongshan Mountains, the autotetraploids grew on the northern slope, while the diploids grew on the southern slopes. The clonal growth characteristics and clonal architecture were measured and analyzed by field observations and morphological methods. The diversity level and differentiation patterns for two different cytotypes were investigated using SSR markers. The results showed that the clonal growth parameters, such as the bud numbers of each rhizome node and the ratio of rhizome branches in the autotetraploids were higher than those in the diploids. Both the diploids and autotetraploids appeared phalanx clonal architectures with short internodes between ramets. However, the ramets or genets of the diploids had a relatively scattered distribution, while those of the autotetraploids were relatively clumping. The diploids and autotetraploids all allocated more biomass to their vegetative growth. The diploids had a higher allocation to reproductive organs than that of autotetraploids, which indicated that the tetraploids invested more resources in clonal reproduction than diploids. The clone diversity and genetic diversity of the autotetraploids were higher than that of the diploids. Significant genetic differentiation between two different cytotypes was observed (P < 0.01). During establishment and evolution, C. udensis autotetraploids employed more clumping phalanx clonal architecture and exhibited more genetic variation than the diploids.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Qiyang Qie
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Meilan Liu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Huiqin Meng
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Tiantian Wu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yadi Yang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Lingling Niu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Genlou Sun
- Department of Botany, Saint Mary's University, Halifax, NS B3H 3C3, Canada.
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
4
|
Schneider DJ, Levin RA, Miller JS. Reproductive isolation between diploid and tetraploid individuals in mixed-cytotype populations of Lycium australe. AMERICAN JOURNAL OF BOTANY 2023; 110:e16133. [PMID: 36706341 DOI: 10.1002/ajb2.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
PREMISE Whole-genome duplication is considered a major mechanism of sympatric speciation due to the creation of strong and instantaneous reproductive barriers. Although postzygotic reproductive isolation between diploids and polyploids is often expected, the extent of reproductive incompatibility must be empirically determined and compared to patterns of genetic isolation to fully characterize the reproductive dynamics between cytotypes. METHODS We investigated reproductive compatibility between diploid and tetraploid Lycium australe in two mixed-cytotype populations using (1) controlled crossing experiments to evaluate fruit and seed production and (2) germination trials to test seed viability following homoploid and heteroploid crosses. We contrast these experiments with a single-nucleotide polymorphism (SNP) data set to measure genetic isolation between cytotypes and explore whether cytotype or population origin better explains patterns of genetic variation. Finally, we explore mating patterns using the observed germination rates of naturally produced seeds in each population. RESULTS Although homoploid and heteroploid crosses resulted in similar fruit and seed production, reproductive isolation between co-occurring diploids and tetraploids was nearly complete, due to low seed viability following heteroploid crosses. Of 191,182 total SNPs, 21,679 were present in ≥90% of individuals and replicate runs using unlinked SNPs revealed strong clustering by cytotype and differentiation of tetraploids based on population origin. CONCLUSIONS As often reported, diploid and tetraploid L. australe experience strong postzygotic isolation via hybrid seed inviability. Consistent with this result, cytotype explained a greater amount of variation in the SNP data set than population origin, despite some evidence of historical introgression.
Collapse
Affiliation(s)
- Derek J Schneider
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| | - Rachel A Levin
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| | - Jill S Miller
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| |
Collapse
|
5
|
Loureiro J, Čertner M, Lučanová M, Sliwinska E, Kolář F, Doležel J, Garcia S, Castro S, Galbraith DW. The Use of Flow Cytometry for Estimating Genome Sizes and DNA Ploidy Levels in Plants. Methods Mol Biol 2023; 2672:25-64. [PMID: 37335468 DOI: 10.1007/978-1-0716-3226-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Flow cytometry has emerged as a uniquely flexible, accurate, and widely applicable technology for the analysis of plant cells. One of its most important applications centers on the measurement of nuclear DNA contents. This chapter describes the essential features of this measurement, outlining the overall methods and strategies, but going on to provide a wealth of technical details to ensure the most accurate and reproducible results. The chapter is aimed to be equally accessible to experienced plant cytometrists as well as those newly entering the field. Besides providing a step-by-step guide for estimating genome sizes and DNA-ploidy levels from fresh tissues, special attention is paid to the use of seeds and desiccated tissues for such purposes. Methodological aspects regarding field sampling, transport, and storage of plant material are also given in detail. Finally, troubleshooting information for the most common problems that may arise during the application of these methods is provided.
Collapse
Affiliation(s)
- João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Barcelona, Catalonia, Spain
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
- Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Kaifeng, China
| |
Collapse
|
6
|
Palmqvist B, Brazeau HA, Parachnowitsch AL. Differences in Floral Scent and Petal Reflectance Between Diploid and Tetraploid Chamerion angustifolium. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome duplication in plants is thought to be a route to speciation due to cytotype incompatibility. However, to reduce cross-pollination between cytotypes in animal-pollinated species, distinctive floral phenotypes, which would allow pollinator-mediated assortative mating between flowers, are also expected. Chamerion angustifolium is a Holarctic species that forms a hybrid zone between diploid and tetraploid populations in the North American Rocky Mountains. Extensive research has shown that these cytotypes differ in many ways, including some floral traits, and that pollinators can discriminate between cytotypes, leading to assortative mating. However, two signals commonly used by insect pollinators have not been measured for this species, namely petal colour and floral scent. Using greenhouse-grown diploids and tetraploids of C. angustifolium from the ploidy hybrid-zone in the North American Rocky Mountains, we show that both floral scent signals and petal reflectance differ between cytotypes. These differences, along with differences in flower size shown previously, could help explain pollinator-mediated assortative mating observed in previous studies. However, these differences in floral phenotypes may vary in importance to pollinators. While the differences in scent included common floral volatiles readily detected by bumblebees, the differences in petal reflectance may not be perceived by bees based on their visual sensitivity across the spectra. Thus, our results suggest that differences in floral volatile emissions are more likely to contribute to pollinator discrimination between cytotypes and highlight the importance of understanding the sensory systems of pollinators when examining floral signals.
Collapse
|
7
|
Kron P, Loureiro J, Castro S, Čertner M. Flow cytometric analysis of pollen and spores: An overview of applications and methodology. Cytometry A 2021; 99:348-358. [PMID: 33625767 DOI: 10.1002/cyto.a.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Pollen grains are the male gametophytes in a seed-plant life cycle. Their small, particulate nature and crucial role in plant reproduction have made them an attractive object of study using flow cytometry (FCM), with a wide range of applications existing in the literature. While methodological considerations for many of these overlap with those for other tissue types (e.g., general considerations for the measurement of nuclear DNA content), the relative complexity of pollen compared to single cells presents some unique challenges. We consider these here in the context of both the identification and isolation of pollen and its subunits, and the types of research applications. While the discussion here mostly concerns pollen, the general principles described here can be extended to apply to spores in ferns, lycophytes, and bryophytes. In addition to recommendations provided in more general studies, some recurring and notable issues related specifically to pollen and spores are highlighted.
Collapse
Affiliation(s)
- Paul Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Evolutionary Plant Biology, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
8
|
Heyduk K, Grace OM, McKain MR. Life Without Water. AMERICAN JOURNAL OF BOTANY 2021; 108:181-183. [PMID: 33620730 DOI: 10.1002/ajb2.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
|