1
|
Gonzalez AM, Romero MF, Sato HA. Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:3010. [PMID: 39519928 PMCID: PMC11548428 DOI: 10.3390/plants13213010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Pilostyles, an endoparasitic genus within the Apodanthaceae family, grows inside host stems with flowers and fruits being the only external manifestations. Previous studies of P. berteroi growing on Adesmia trijuga provided limited details of the endophyte and omitted the origin of flowers and sinker structure. This study, using classical methods of optical microscopy applied to the analysis with scanning electron microscopy and confocal laser scanning microscopy, expands the understanding of the P. berteroi/A. trijuga complex. We find that P. berteroi develops isophasically with its host, forming endophytic patches between the host's secondary phloem cells. The parasitized Adesmia stem's cambium primarily produces xylem parenchyma, with limited vessel production and halting fiber formation. The radial polarization of endophytic patches led to the formation of floral meristems. Flowers develop endogenously and emerge by the breakthrough of the host stem. Flowers are connected to the host cambium via chimeric sinkers, combining P. berteroi parenchyma and tracheoids with Adesmia vessels. Unlike previous studies that show uniformity among Pilostyles species, our analysis reveals new insights into the structural interaction between P. berteroi and A. trijuga.
Collapse
Affiliation(s)
- Ana Maria Gonzalez
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes PC 3400, Argentina;
| | - María Florencia Romero
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes PC 3400, Argentina;
| | - Héctor A. Sato
- Centro de Estudios e Investigaciones Botánicas, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Jujuy PC 4600, Argentina;
| |
Collapse
|
2
|
Rios-Carrasco S, Sánchez D, Ortega-González PF, Gutiérrez-Luna MF, Farfán-Beltrán ME, Mandujano MC, Vázquez-Santana S. The floral biology and the role of staminal connective appendages during pollination of the endoparasite Bdallophytum americanum (Cytinaceae). JOURNAL OF PLANT RESEARCH 2023; 136:643-655. [PMID: 37311992 PMCID: PMC10421756 DOI: 10.1007/s10265-023-01466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Bdallophytum americanum (Cytinaceae) is an endoparasitic plant species, meaning only the flowers emerge from the host during the reproductive season. Reports on the pollination biology of this species state that its primary pollinators are carrion flies attracted by the smell of the flowers and nectar as a reward. However, the functional role of one of the most outstanding attributes of B. americanum has been neglected. These are the staminal appendages formed by the apical overgrowth of connective tissue during anther development. To determine whether these staminal appendages play a role in pollination, we monitored a nectarless population of B. americanum. We described the inflorescence emergence, floral movements, and pollination and performed field experiments to test whether the absence of the staminal connective appendages affected the visitation frequency. Male inflorescences emerge early, and both male and female flowers open during the day and do not close. Hoverflies are the most frequent visitors to both floral sexes and carry the most pollen. Moreover, the movement of staminal appendages matching the pollen viability changes is reported for the first time. The staminal appendages are the structures where pollinators land before foraging. The field experiments showed that the visitation frequency decreased sharply without staminal appendages. As a landing platform, the staminal connective appendages in B. americanum are crucial for pollinator positioning and collecting viable pollen.
Collapse
Affiliation(s)
- Sandra Rios-Carrasco
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, México
| | - Daniel Sánchez
- CONACYT-Laboratorio Nacional de Identificación y Caracterización Vegetal, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, 44171, Zapopan, Jalisco, México
| | - Pactli F Ortega-González
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, México
| | - Morayna F Gutiérrez-Luna
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, México
| | - Manuel Edday Farfán-Beltrán
- Posgrado en Ciencias Biológicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de Mexico, México
| | - María C Mandujano
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 04510, Ciudad de Mexico, México
| | - Sonia Vázquez-Santana
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, México.
| |
Collapse
|
3
|
Cai L. Rethinking convergence in plant parasitism through the lens of molecular and population genetic processes. AMERICAN JOURNAL OF BOTANY 2023; 110:e16174. [PMID: 37154532 DOI: 10.1002/ajb2.16174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
The autotrophic lifestyle of photosynthetic plants has profoundly shaped their body plan, physiology, and gene repertoire. Shifts to parasitism and heterotrophy have evolved at least 12 times in more than 4000 species, and this transition has consequently left major evolutionary footprints among these parasitic lineages. Features that are otherwise rare at the molecular level and beyond have evolved repetitively, including reduced vegetative bodies, carrion-mimicking during reproduction, and the incorporation of alien genetic material. Here, I propose an integrated conceptual model, referred to as the funnel model, to define the general evolutionary trajectory of parasitic plants and provide a mechanistic explanation for their convergent evolution. This model connects our empirical understanding of gene regulatory networks in flowering plants with classical theories of molecular and population genetics. It emphasizes that the cascading effects brought about by the loss of photosynthesis may be a major force constraining the physiological capacity of parasitic plants and shaping their genomic landscapes. Here I review recent studies on the anatomy, physiology, and genetics of parasitic plants that lend support to this photosynthesis-centered funnel model. Focusing on nonphotosynthetic holoparasites, I elucidate how they may inevitably reach an evolutionary terminal status (i.e., extinction) and highlight the utility of a general, explicitly described and falsifiable model for future studies of parasitic plants.
Collapse
Affiliation(s)
- Liming Cai
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Mantzouka D, Akkemik Ü, Güngör Y. Miocene Cupressinoxylon from Gökçeada (Imbros), Turkey with Protophytobia cambium mining and the study of ecological signals of wood anatomy. PeerJ 2022; 10:e14212. [PMID: 36530400 PMCID: PMC9753763 DOI: 10.7717/peerj.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/19/2022] [Indexed: 12/14/2022] Open
Abstract
Premise The recognition of the Miocene Climate Optimum (MCO) in terrestrial palaeoenvironments of the Eastern Mediterranean is restricted to Lesbos and Lemnos Islands, Greece. This area is significant for its wood microfossils. A recently-discovered fossil wood assemblage from Gökçeada (Imbros) Island, Turkey, including tree species similar to the Greek findings, is thought to have an early Miocene age. Here, we revise the age of the latter plant fossiliferous locality, re-evaluate the area for the study of MCO for the terrestrial palaeoecosystems of the Eastern Mediterranean and the nomenclature errors referring to the occurrence of fossil wood. We present the plant-insect-environment interactions using detailed anatomical descriptions, of an extinct conifer and its extinct cambium miner feeding traces observed in its secondary xylem. Methods Three thin sections were prepared with standard palaeoxylotomical techniques from a small section of the silicified wood; the sections were observed under a light microscope. The anatomy of the conifer and its damage patterns were compared with those of extant and fossil Cupressaceae and Agromyzidae, respectively. Pivotal results The common anatomical features of the studied wood specimen and Hesperocyparis macrocarpa (Hartw.) Bartel and a shared characteristic (the number of the cross-field pits - a feature we consider of diagnostic value) with Xanthocyparis vietnamensis Farjon & T.H. Nguyên led to its assignment to the Hesperocyparis-Xanthocyparis-Callitropsis clade. The detailed study of the wound scars and anatomical abnormalities, the anatomical-environmental associations, and structural-functional reactions follow the identification of the wood's anatomy sensu Carlquist providing decisive results. Conclusions Based on the distinctive characteristics presented, we identify our macrofossil as Cupressinoxylon matromnense Grambast, a stem or an extinct lineage of the Hesperocyparis-Xanthocyparis vietnamensis-Callitropsis nootkatensis clade with feeding traces of the fossil cambium miner of the genus Protophytobia Süss (Diptera: Agromyzidae), and anatomical damage and reaction tissue on adventitious shoots. The use of Protopinaceae and Pinoxylon F. H. Knowlton from the eastern Mediterranean are re-evaluated and corrections are provided. The age of the studied plant fossiliferous locality in Gökçeada is revised as middle Miocene, allowing the proposal of an eastern Mediterranean MCO hotspot, including Lesbos, Lemnos, and Gökçeada (Imbros) Islands.
Collapse
Affiliation(s)
- Dimitra Mantzouka
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße, Senckenberg Nature Research Society, Dresden, Germany
| | - Ünal Akkemik
- Department of Forest Botany, Forestry Faculty, Bahçeköy-Sarıyer, Istanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Yıldırım Güngör
- Department of Geology Engineering, Faculty of Engineering, Avcılar, İstanbul University-Cerrahpasa, İstanbul, Turkey
| |
Collapse
|
5
|
Ibarra-Laclette E, Venancio-Rodríguez CA, Vásquez-Aguilar AA, Alonso-Sánchez AG, Pérez-Torres CA, Villafán E, Ramírez-Barahona S, Galicia S, Sosa V, Rebollar EA, Lara C, González-Rodríguez A, Díaz-Fleisher F, Ornelas JF. Transcriptional Basis for Haustorium Formation and Host Establishment in Hemiparasitic Psittacanthus schiedeanus Mistletoes. Front Genet 2022; 13:929490. [PMID: 35769994 PMCID: PMC9235361 DOI: 10.3389/fgene.2022.929490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The mistletoe Psittacanthus schiedeanus, a keystone species in interaction networks between plants, pollinators, and seed dispersers, infects a wide range of native and non-native tree species of commercial interest. Here, using RNA-seq methodology we assembled the whole circularized quadripartite structure of P. schiedeanus chloroplast genome and described changes in the gene expression of the nuclear genomes across time of experimentally inoculated seeds. Of the 140,467 assembled and annotated uniGenes, 2,000 were identified as differentially expressed (DEGs) and were classified in six distinct clusters according to their expression profiles. DEGs were also classified in enriched functional categories related to synthesis, signaling, homoeostasis, and response to auxin and jasmonic acid. Since many orthologs are involved in lateral or adventitious root formation in other plant species, we propose that in P. schiedeanus (and perhaps in other rootless mistletoe species), these genes participate in haustorium formation by complex regulatory networks here described. Lastly, and according to the structural similarities of P. schiedeanus enzymes with those that are involved in host cell wall degradation in fungi, we suggest that a similar enzymatic arsenal is secreted extracellularly and used by mistletoes species to easily parasitize and break through tissues of the host.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | | | | | | | - Claudia-Anahí Pérez-Torres
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigador por Mexico-CONACyT en el Instituto de Ecología A.C. (INECOL), Xalapa, Mexico
| | - Emanuel Villafán
- Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico
| | - Sonia Galicia
- Instituto de Ecología A.C. (INECOL), Red de Biología Evolutiva, Xalapa, Mexico
| | - Victoria Sosa
- Instituto de Ecología A.C. (INECOL), Red de Biología Evolutiva, Xalapa, Mexico
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Antonio González-Rodríguez
- Laboratorio de Genética de la Conservación, Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM, Morelia, Mexico
| | | | | |
Collapse
|
6
|
Thorogood CJ, Teixeira-Costa L, Ceccantini G, Davis C, Hiscock SJ. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. THE NEW PHYTOLOGIST 2021; 232:1159-1167. [PMID: 34251722 DOI: 10.1111/nph.17556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Endoparasitic plants are the most reduced flowering plants, spending most of their lives as a network of filaments within the tissues of their hosts. Despite their extraordinary life form, we know little about their biology. Research into a few species has revealed unexpected insights, such as the total loss of plastome, the reduction of the vegetative phase to a proembryonic stage, and elevated information exchange between host and parasite. To consolidate our understanding, we review life history, anatomy, and molecular genetics across the four independent lineages of endoparasitic plants. We highlight convergence across these clades and a striking trans-kingdom convergence in life history among endoparasitic plants and disparate lineages of fungi at the molecular and physiological levels. We hypothesize that parasitism of woody plants preselected for the endoparasitic life history, providing parasites a stable host environment and the necessary hydraulics to enable floral gigantism and/or high reproductive output. Finally, we propose a broader view of endoparasitic plants that connects research across disciplines, for example, pollen-pistil and graft incompatibility interactions and plant associations with various fungi. We shine a light on endoparasitic plants and their hosts as under-explored ecological microcosms ripe for identifying unexpected biological processes, interactions and evolutionary convergence.
Collapse
Affiliation(s)
- Chris J Thorogood
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Gregório Ceccantini
- Dp. of Botany, University of São Paulo, IB-USP, Rua do Matão 277, São Paulo, SP 05508-090, Brazil
| | - Charles Davis
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Simon J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
7
|
Teixeira-Costa L, Davis CC. Life history, diversity, and distribution in parasitic flowering plants. PLANT PHYSIOLOGY 2021; 187:32-51. [PMID: 35237798 PMCID: PMC8418411 DOI: 10.1093/plphys/kiab279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/25/2021] [Indexed: 06/08/2023]
Abstract
A review of parasitic plant diversity and outstanding disjunct distributions according to an updated functional classification based on these plants’ life cycles.
Collapse
|