1
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
2
|
Rørvik SD, Torkildsen S, Bruserud Ø, Tvedt THA. Acute myeloid leukemia with rare recurring translocations-an overview of the entities included in the international consensus classification. Ann Hematol 2024; 103:1103-1119. [PMID: 38443661 PMCID: PMC10940453 DOI: 10.1007/s00277-024-05680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these entities is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involving NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
Collapse
Affiliation(s)
- Synne D Rørvik
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
3
|
Jiang A, Zhang S, Wang X, Li D. RBM15 condensates modulate m 6A modification of STYK1 to promote tumorigenesis. Comput Struct Biotechnol J 2022; 20:4825-4836. [PMID: 36147665 PMCID: PMC9464649 DOI: 10.1016/j.csbj.2022.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
RBM15 expression is recurrently upregulated in several types of malignant tissues, and its high expression level is typically associated with poor prognosis. However, whether and how RBM15 is involved in the tumor progression remains unclear. In this study, we found that overexpressing RBM15 in NIH3T3 cells was able to enhance proliferation rate in vitro and induced subcutaneous tumor formation in vivo. Moreover, we imaged the subcellular localization of RBM15 with our home-built structured illumination super-resolution microscopy, and revealed that RBM15 formed substantial condensates dispersed in the nucleus, undergoing dynamic fusion and fission activities. These condensates were partially colocalized with m6A-modified transcripts in the nucleus. In addition, we confirmed that RBM15 formed “liquid-like” droplets in a protein/salt concentration-dependent manner in vitro, and the addition of RNA further enhanced its phase-separation propensity. To identify downstream targets of RBM15, we performed meRIP-seq and RNA-seq, revealing that RBM15 preferentially bound to and promoted the m6A modification on the mRNA of Serine/threonine/tyrosine kinase 1 (STYK1), thereby enhancing its stability. The upregulated STYK1 expression caused MAPK hyperactivation, thereby leading to oncogenic transformation of NIH3T3 cells.
Collapse
Affiliation(s)
- Amin Jiang
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Siwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding authors at: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X. Wang and D. Li).
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors at: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X. Wang and D. Li).
| |
Collapse
|
4
|
Epitranscriptomics in myeloid malignancies. BLOOD SCIENCE 2022; 4:133-135. [DOI: 10.1097/bs9.0000000000000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022] Open
|
5
|
Huang J, Chen Z, Chen X, Chen J, Cheng Z, Wang Z. The role of RNA N 6-methyladenosine methyltransferase in cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:887-896. [PMID: 33614237 PMCID: PMC7868687 DOI: 10.1016/j.omtn.2020.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modification of eukaryotic RNA by methylation of adenosine residues to generate N6-methyladenosine (m6A) is a highly prevalent process. m6A is dynamically regulated during cell metabolism and embryo development, and it is mainly involved in various aspects of RNA metabolism, including RNA splicing, processing, transport from the nucleus, translation, and degradation. Accumulating evidence shows that dynamic changes to m6A are closely related to the occurrence and development of cancer and that methyltransferases, as key elements in the dynamic regulation of m6A, play a crucial role in these processes. Therefore, in this review, we describe the role of methyltransferases as m6A writers in cancer and summarize their potential molecular mechanisms of action.
Collapse
Affiliation(s)
- Jiali Huang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Jun Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China.,Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, China
| | - Zhixiang Cheng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| |
Collapse
|
6
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
7
|
Pinello N, Sun S, Wong JJL. Aberrant expression of enzymes regulating m 6A mRNA methylation: implication in cancer. Cancer Biol Med 2018; 15:323-334. [PMID: 30766746 PMCID: PMC6372906 DOI: 10.20892/j.issn.2095-3941.2018.0365] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
N6-methyladenosine (m6A) is an essential RNA modification that regulates key cellular processes, including stem cell renewal, cellular differentiation, and response to DNA damage. Unsurprisingly, aberrant m6A methylation has been implicated in the development and maintenance of diverse human cancers. Altered m6A levels affect RNA processing, mRNA degradation, and translation of mRNAs into proteins, thereby disrupting gene expression regulation and promoting tumorigenesis. Recent studies have reported that the abnormal expression of m6A regulatory enzymes affects m6A abundance and consequently dysregulates the expression of tumor suppressor genes and oncogenes, including MYC, SOCS2, ADAM19, and PTEN. In this review, we discuss the specific roles of m6A "writers", "erasers", and "readers" in normal physiology and how their altered expression promotes tumorigenesis. We also describe the potential of exploiting the aberrant expression of these enzymes for cancer diagnosis, prognosis, and the development of novel therapies.
Collapse
Affiliation(s)
- Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown 2050, Australia
| | - Stephanie Sun
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown 2050, Australia
| | - Justin Jong-Leong Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown 2050, Australia
| |
Collapse
|
8
|
Luo H, Li H, Hu Z, Wu H, Liu C, Li Y, Zhang X, Lin P, Hou Q, Ding G, Wang Y, Li S, Wei D, Qiu F, Li Y, Wu S. Noninvasive diagnosis and monitoring of mutations by deep sequencing of circulating tumor DNA in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2016; 471:596-602. [PMID: 26876573 DOI: 10.1016/j.bbrc.2016.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
Circulating tumor DNA (ctDNA) is becoming an important biomarker in noninvasive diagnosis and monitoring of tumor dynamics. This study tested the feasibility of plasma ctDNA for the non-invasive analysis of tumor mutations in esophageal squamous cell carcinoma (ESCC) by sequencing of tumor, tumor-adjacent, and normal tissue, as well as pre-surgery and post-surgery plasma. Exome sequencing of eight patients identified between 29 and 134 somatic mutations in ESCCs, many of which were also determined in ctDNA. Comparison of pre-surgery and post-surgery plasma has shown that mutations had reduced frequency or disappeared after surgery treatment. We further evaluated the TruSight Cancer sequencing panel by using it to detect mutations in the plasma of three patients. Tumor mutations were only found in one of them. To design a sequencing panel with improved targeting, we identified significantly mutated genes by meta-analysis of 532 ESCC genomes. Our results confirmed the well-known driver genes and found several uncharacterized genes. The new panel consisted of 90 recurrent genes, which theoretically achieved 94% and 75% of sensitivity when detecting at least 1 and 2 mutant genes in ESCC patients, respectively. Our results demonstrate the feasibility of using ctDNA to detect ESCCs and monitor treatment effect. The low-cost and sensitive target panel could facilitate clinical usage of ctDNA as a noninvasive biomarker.
Collapse
Affiliation(s)
- Honglei Luo
- Department of Radiotherapy, Huai'an First People's Hospital, Huai'an, China
| | - Hong Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyang Hu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Hongjin Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Chenglin Liu
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Ying Li
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Xiaoyan Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Ping Lin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Hou
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Guohui Ding
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shuang Li
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Dongkai Wei
- Basepair Biotechnology, Co.,Ltd, Suzhou, China
| | - Feng Qiu
- Basepair Biotechnology, Co.,Ltd, Suzhou, China
| | - Yixue Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China.
| |
Collapse
|
9
|
Huang D, Sumegi J, Cin PD, Reith JD, Yasuda T, Nelson M, Muirhead D, Bridge JA. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010; 49:810-8. [PMID: 20607705 PMCID: PMC2904421 DOI: 10.1002/gcc.20788] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chondroid lipoma, a rare benign adipose tissue tumor, may histologically resemble myxoid liposarcoma or extraskeletal myxoid chondrosarcoma, but is genetically distinct. In this study, an identical reciprocal translocation, t(11;16)(q13;p13), was identified in three chondroid lipomas, a finding consistent with previously isolated reports. A fluorescence in situ hybridization (FISH)-based positional cloning strategy using a series of bacterial artificial chromosome (BAC) probe combinations designed to narrow the 16p13 breakpoint revealed MKL2 as the candidate gene. Subsequent 5' RACE studies demonstrated C11orf95 as the MKL2 fusion gene partner. MKL/myocardin-like 2 (MKL2) encodes myocardin-related transcription factor B in a megakaryoblastic leukemia gene family, and C11orf95 (chromosome 11 open reading frame 95) is a hypothetical protein. Sequencing analysis of reverse transcription-polymerse chain reaction (RT-PCR) generated transcripts from all three chondroid lipomas defined the fusion as occurring between exons 5 and 9 of C11orf95 and MKL2, respectively. Dual-color breakpoint spanning probe sets custom-designed for recognition of the translocation event in interphase cells confirmed the anticipated rearrangements of the C11orf95 and MKL2 loci in all cases. The FISH and RT-PCR assays developed in this study can serve as diagnostic adjuncts for the identification of this novel C11orf95-MKL2 fusion oncogene in chondroid lipoma.
Collapse
Affiliation(s)
- Dali Huang
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Janos Sumegi
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical Center, Boston, MA, USA
| | - John D. Reith
- Department of Pathology, Immunology, and Laboratory Medicine, Unit of Bone and Soft Tissue Pathology, University of Florida Health Sciences, Gainesville, FL, USA
| | - Taketoshi Yasuda
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marilu Nelson
- Pediatrics/Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Muirhead
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julia A. Bridge
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Pediatrics/Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
- Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Ma X, Renda MJ, Wang L, Cheng EC, Niu C, Morris SW, Chi AS, Krause DS. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol Cell Biol 2007; 27:3056-64. [PMID: 17283045 PMCID: PMC1899951 DOI: 10.1128/mcb.01339-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RBM15 is the fusion partner with MKL in the t(1;22) translocation of acute megakaryoblastic leukemia. To understand the role of the RBM15-MKL1 fusion protein in leukemia, we must understand the normal functions of RBM15 and MKL. Here, we show a role for Rbm15 in myelopoiesis. Rbm15 is expressed at highest levels in hematopoietic stem cells and at more moderate levels during myelopoiesis of murine cell lines and primary murine cells. Decreasing Rbm15 levels with RNA interference enhances differentiation of the 32DWT18 myeloid precursor cell line. Conversely, enforced expression of Rbm15 inhibits 32DWT18 differentiation. We show that Rbm15 alters Notch-induced HES1 promoter activity in a cell type-specific manner. Rbm15 inhibits Notch-induced HES1 transcription in nonhematopoietic cells but stimulates this activity in hematopoietic cell lines, including 32DWT18 and human erythroleukemia cells. Moreover, the N terminus of Rbm15 coimmunoprecipitates with RBPJkappa, a critical factor in Notch signaling, and the Rbm15 N terminus has a dominant negative effect, impairing activation of HES1 promoter activity by full-length-Rbm15. Thus, Rbm15 is differentially expressed during hematopoiesis and may act to inhibit myeloid differentiation in hematopoietic cells via a mechanism that is mediated by stimulation of Notch signaling via RBPJkappa.
Collapse
Affiliation(s)
- Xianyong Ma
- Yale University School of Medicine, Department of Laboratory Medicine, P.O. Box 208035, 333 Cedar Street, New Haven, CT 06520-8035, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lindtner S, Zolotukhin AS, Uranishi H, Bear J, Kulkarni V, Smulevitch S, Samiotaki M, Panayotou G, Felber BK, Pavlakis GN. RNA-binding Motif Protein 15 Binds to the RNA Transport Element RTE and Provides a Direct Link to the NXF1 Export Pathway. J Biol Chem 2006; 281:36915-28. [PMID: 17001072 DOI: 10.1074/jbc.m608745200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviruses/retroelements provide tools enabling the identification and dissection of basic steps for post-transcriptional regulation of cellular mRNAs. The RNA transport element (RTE) identified in mouse retrotransposons is functionally equivalent to constitutive transport element of Type D retroviruses, yet does not bind directly to the mRNA export receptor NXF1. Here, we report that the RNA-binding motif protein 15 (RBM15) recognizes RTE directly and specifically in vitro and stimulates export and expression of RTE-containing reporter mRNAs in vivo. Tethering of RBM15 to a reporter mRNA showed that RBM15 acts by promoting mRNA export from the nucleus. We also found that RBM15 binds to NXF1 and the two proteins cooperate in stimulating RTE-mediated mRNA export and expression. Thus, RBM15 is a novel mRNA export factor and is part of the NXF1 pathway. We propose that RTE evolved as a high affinity RBM15 ligand to provide a splicing-independent link to NXF1, thereby ensuring efficient nuclear export and expression of retrotransposon transcripts.
Collapse
|
12
|
Pipes GCT, Creemers EE, Olson EN. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 2006; 20:1545-56. [PMID: 16778073 DOI: 10.1101/gad.1428006] [Citation(s) in RCA: 386] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The association of transcriptional coactivators with sequence-specific DNA-binding proteins provides versatility and specificity to gene regulation and expands the regulatory potential of individual cis-regulatory DNA sequences. Members of the myocardin family of coactivators activate genes involved in cell proliferation, migration, and myogenesis by associating with serum response factor (SRF). The partnership of myocardin family members and SRF also controls genes encoding components of the actin cytoskeleton and confers responsiveness to extracellular growth signals and intracellular changes in the cytoskeleton, thereby creating a transcriptional-cytoskeletal regulatory circuit. These functions are reflected in defects in smooth muscle differentiation and function in mice with mutations in myocardin family members. This article reviews the functions and mechanisms of action of the myocardin family of coactivators and the physiological significance of transcriptional coactivation in the context of signal-dependent and cell-type-specific gene regulation.
Collapse
Affiliation(s)
- G C Teg Pipes
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|